Ruskey and Savage asked the following question: Does every matching in a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink confirmed that every perfect matching can be extended to a Hamiltonian cycle of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}. In this paper, we prove that every matching in Q5 can be extended to a Hamiltonian cycle of Q5.
@article{bwmeta1.element.doi-10_7151_dmgt_2010, author = {Fan Wang and Weisheng Zhao}, title = {Matchings Extend to Hamiltonian Cycles in 5-Cube}, journal = {Discussiones Mathematicae Graph Theory}, volume = {38}, year = {2018}, pages = {217-231}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_2010} }
Fan Wang; Weisheng Zhao. Matchings Extend to Hamiltonian Cycles in 5-Cube. Discussiones Mathematicae Graph Theory, Tome 38 (2018) pp. 217-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_2010/