Domination Parameters of a Graph and its Complement
Wyatt J. Desormeaux ; Teresa W. Haynes ; Michael A. Henning
Discussiones Mathematicae Graph Theory, Tome 38 (2018), p. 203-215 / Harvested from The Polish Digital Mathematics Library

A dominating set in a graph G is a set S of vertices such that every vertex in V (G) S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

Publié le : 2018-01-01
EUDML-ID : urn:eudml:doc:288346
@article{bwmeta1.element.doi-10_7151_dmgt_2002,
     author = {Wyatt J. Desormeaux and Teresa W. Haynes and Michael A. Henning},
     title = {Domination Parameters of a Graph and its Complement},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {38},
     year = {2018},
     pages = {203-215},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_2002}
}
Wyatt J. Desormeaux; Teresa W. Haynes; Michael A. Henning. Domination Parameters of a Graph and its Complement. Discussiones Mathematicae Graph Theory, Tome 38 (2018) pp. 203-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_2002/