For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that [...] nΔ,D=ΔD2+O (ΔD2−1) is even, and [...] nΔ,D=3ΔD−12+O (ΔD−12−1) if D is odd. We then extend our result to maximal outerplanar graphs by showing that the maximum number of vertices in a maximal outerplanar graph of maximum degree Δ and diameter D asymptotically equals nΔ,D.
@article{bwmeta1.element.doi-10_7151_dmgt_1969, author = {Peter Dankelmann and Elizabeth Jonck and Tom\'a\v s Vetr\'\i k}, title = {The Degree-Diameter Problem for Outerplanar Graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {37}, year = {2017}, pages = {823-834}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1969} }
Peter Dankelmann; Elizabeth Jonck; Tomáš Vetrík. The Degree-Diameter Problem for Outerplanar Graphs. Discussiones Mathematicae Graph Theory, Tome 37 (2017) pp. 823-834. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1969/