The Degree-Diameter Problem for Outerplanar Graphs
Peter Dankelmann ; Elizabeth Jonck ; Tomáš Vetrík
Discussiones Mathematicae Graph Theory, Tome 37 (2017), p. 823-834 / Harvested from The Polish Digital Mathematics Library

For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that [...] nΔ,D=ΔD2+O (ΔD2−1) nΔ,D=ΔD2+OΔD2-1 is even, and [...] nΔ,D=3ΔD−12+O (ΔD−12−1) nΔ,D=3ΔD-12+OΔD-12-1 if D is odd. We then extend our result to maximal outerplanar graphs by showing that the maximum number of vertices in a maximal outerplanar graph of maximum degree Δ and diameter D asymptotically equals nΔ,D.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:288570
@article{bwmeta1.element.doi-10_7151_dmgt_1969,
     author = {Peter Dankelmann and Elizabeth Jonck and Tom\'a\v s Vetr\'\i k},
     title = {The Degree-Diameter Problem for Outerplanar Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {37},
     year = {2017},
     pages = {823-834},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1969}
}
Peter Dankelmann; Elizabeth Jonck; Tomáš Vetrík. The Degree-Diameter Problem for Outerplanar Graphs. Discussiones Mathematicae Graph Theory, Tome 37 (2017) pp. 823-834. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1969/