K3-Worm Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum
Csilla Bujtás ; Zsolt Tuza
Discussiones Mathematicae Graph Theory, Tome 36 (2016), p. 759-772 / Harvested from The Polish Digital Mathematics Library

A K3-WORM coloring of a graph G is an assignment of colors to the vertices in such a way that the vertices of each K3-subgraph of G get precisely two colors. We study graphs G which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer. 219 (2014) 161-173] by proving that for every integer k ≥ 3 there exists a K3-WORM-colorable graph in which the minimum number of colors is exactly k. There also exist K3-WORM colorable graphs which have a K3-WORM coloring with two colors and also with k colors but no coloring with any of 3, . . . , k − 1 colors. We also prove that it is NP-hard to determine the minimum number of colors, and NP-complete to decide k-colorability for every k ≥ 2 (and remains intractable even for graphs of maximum degree 9 if k = 3). On the other hand, we prove positive results for d-degenerate graphs with small d, also including planar graphs.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285926
@article{bwmeta1.element.doi-10_7151_dmgt_1891,
     author = {Csilla Bujt\'as and Zsolt Tuza},
     title = {K3-Worm Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {36},
     year = {2016},
     pages = {759-772},
     zbl = {1339.05116},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1891}
}
Csilla Bujtás; Zsolt Tuza. K3-Worm Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 759-772. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1891/

[1] S. Arumugam, B.K. Jose, Cs. Bujtás and Zs. Tuza, Equality of domination and transversal numbers in hypergraphs, Discrete Appl. Math. 161 (2013) 1859-1867. doi:10.1016/j.dam.2013.02.009[WoS][Crossref] | Zbl 1286.05115

[2] G. Bacsó, Cs. Bujtás, Zs. Tuza and V. Voloshin, New challenges in the theory of hypergraph coloring, in: Advances in Discrete Mathematics and Applications, Ramanujan Mathematical Society Lecture Notes Series 13 (2010) 45-57.

[3] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, Ch. Dominic and L. Pushpalatha, Vertex coloring without large polychromatic stars, Discrete Math. 312 (2012) 2102-2108. doi:10.1016/j.disc.2011.04.013[WoS][Crossref] | Zbl 1244.05088

[4] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, M.S. Subramanya and Ch. Dominic, 3- consecutive C-colorings of graphs, Discuss. Math. Graph Theory 30 (2010) 393-405. doi:10.7151/dmgt.1502[Crossref]

[5] Cs. Bujtás and Zs. Tuza, Maximum number of colors: C-coloring and related problems, J. Geom. 101 (2011) 83-97. doi:10.1007/s00022-011-0082-2[Crossref]

[6] Cs. Bujtás and Zs. Tuza, Kn-WORM colorings of graphs: Feasible sets and upper chromatic number, manuscript in preparation (2015).

[7] Cs. Bujtás, Zs. Tuza and V.I. Voloshin, Hypergraph colouring, Chapter 11 in: L.W. Beineke and R.J. Wilson, (Eds.), Topics in Chromatic Graph Theory, Encyclopedia of Mathematics and Its Applications 156 (Cambridge University Press, 2014), 230-254.

[8] W. Goddard, K. Wash and H. Xu, WORM colorings forbidding cycles or cliques, Congr. Numer. 219 (2014) 161-173. | Zbl 1312.05050

[9] W. Goddard, K. Wash and H. Xu, WORM colorings, Discuss. Math. Graph Theory 35 (2015) 571-584. doi:10.7151/dmgt.1814[Crossref]

[10] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, 1995).

[11] A. Kündgen and R. Ramamurthi, Coloring face-hypergraphs of graphs on surfaces, J. Combin. Theory Ser. B 85 (2002) 307-337. doi:10.1006/jctb.2001.2107[Crossref] | Zbl 1029.05057

[12] L. Lovász, Coverings and colorings of hypergraphs, Congr. Numer. 8 (1973) 3-12. | Zbl 0322.05114

[13] D. Marx, The complexity of chromatic strength and chromatic edge strength, Comput. Complexity 14 (2006) 308-340. doi:10.1007/s00037-005-0201-2[Crossref] | Zbl 1103.05032

[14] F. Maffray and M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Math. 162 (1996) 313-317. doi:10.1016/S0012-365X(97)89267-9[Crossref] | Zbl 0870.05021

[15] K. Ozeki, private communication, June 2015.

[16] V.I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova 1 (1993) 45-52.

[17] V.I. Voloshin, On the upper chromatic number of a hypergraph, Australas. J. Combin. 11 (1995) 25-45. | Zbl 0827.05027

[18] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications (Fields Institute Monographs 17, Amer. Math. Soc., 2002). | Zbl 1001.05003

[19] V.I. Voloshin, Mixed hypergraph coloring web site. http://spectrum.troy.edu/voloshin/mh.html

[20] V.I. Voloshin, private communication, November 2013.