Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants
Kinkar Ch. Das ; Yujun Yang ; Kexiang Xu
Discussiones Mathematicae Graph Theory, Tome 36 (2016), p. 695-707 / Harvested from The Polish Digital Mathematics Library

Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285785
@article{bwmeta1.element.doi-10_7151_dmgt_1890,
     author = {Kinkar Ch. Das and Yujun Yang and Kexiang Xu},
     title = {Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {36},
     year = {2016},
     pages = {695-707},
     zbl = {1339.05085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1890}
}
Kinkar Ch. Das; Yujun Yang; Kexiang Xu. Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 695-707. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1890/

[1] D. Bonchev, A.T. Balaban, X. Liu and D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20. doi:10.1002/qua.560500102[Crossref]

[2] H. Chen and F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155 (2007) 654-661. doi:10.1016/j.dam.2006.09.008[WoS][Crossref]

[3] H. Chen and F. Zhang, Resistance distance local rules, J. Math. Chem. 44 (2008) 405-417. doi:10.1007/s10910-007-9317-8[Crossref] | Zbl 1217.05082

[4] P. Dankelmann, H.C. Swart and P. van den Berg, Diameter and inverse degree, Discrete Math. 308 (2008) 670-673. doi:10.1016/j.disc.2007.07.053[WoS][Crossref] | Zbl 1142.05022

[5] K.Ch. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514-521. doi:10.1007/s10910-008-9475-3[WoS][Crossref] | Zbl 1200.92048

[6] R.M. Foster, The average impedance of an electrical network, in: Contributions to Applied Mechanics (Edwards Bros., Michigan, Ann Arbor, 1949) 333-340. | Zbl 0040.41801

[7] I. Gutman, L. Feng and G. Yu, Degree resistance distance of unicyclic graphs, Trans. Comb. 1 (2012) 27-40. | Zbl 1301.05103

[8] I. Gutman and B. Mohar, The Quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996) 982-985. doi:10.1021/ci960007t[Crossref]

[9] D.J. Klein, Graph geometry, graph metrics, & Wiener , MATCH Commun. Math. Comput. Chem. 35 (1997) 7-27. | Zbl 1014.05063

[10] D.J. Klein, Centrality measure in graphs, J. Math. Chem. 47 (2010) 1209-1223. doi:10.1007/s10910-009-9635-0[Crossref] | Zbl 05721708

[11] D.J. Klein and O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit , J. Math. Chem. 30 (2001) 271-287. doi:10.1023/A:1015119609980[Crossref] | Zbl 1008.05082

[12] D.J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81-95. doi:10.1007/BF01164627[Crossref]

[13] D.J. Klein and H.-Y. Zhu, Distances and volumina for graphs, J. Math. Chem. 23 (1998) 179-195. doi:10.1023/A:1019108905697[Crossref] | Zbl 0908.05038

[14] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177. doi:10.2307/2306658[Crossref] | Zbl 0070.18503

[15] J.L. Palacios and J.M. Renom, Another look at the degree-Kirchhoff index , Int. J. Quantum Chem. 111 (2011) 3453-3455. doi:10.1002/qua.22725[Crossref][WoS]

[16] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20. doi:10.1021/ja01193a005[Crossref]

[17] W. Xiao and I. Gutman, Resistance distance and Laplacian spectrum, Theor. Chem. Acc. 110 (2003) 284-289. doi:10.1007/s00214-003-0460-4[Crossref]

[18] Y. Yang, Relations between resistance distances of a graph and its complement or its contraction, Croat. Chem. Acta 87 (2014) 61-68. doi:10.5562/cca2318[WoS][Crossref]

[19] Y. Yang, H. Zhang and D.J. Klein, New Nardhaus-Gaddum-type results for the Kirchhoff index , J. Math. Chem. 49 (2011) 1587-1598. doi:10.1007/s10910-011-9845-0[Crossref][WoS] | Zbl 1227.92054

[20] B. Zhou and N. Trinajstić, A note on Kirchhoff index , Chem. Phys. Lett. 455 (2008) 120-123. doi:10.1016/j.cplett.2008.02.060[WoS][Crossref]

[21] B. Zhou and N. Trinajstić, On resistance-distance and Kirchhoff index , J. Math. Chem. 46 (2009) 283-289. doi:10.1007/s10910-008-9459-3[WoS][Crossref] | Zbl 1187.92092

[22] H.-Y. Zhu, D.J. Klein and I. Lukovits, Extensions of the Wiener number , J. Chem. Inf. Comput. Sci. 36 (1996) 420-428. doi:10.1021/ci950116s[Crossref]