Perfect Set of Euler Tours of Kp,p,p
T. Govindan ; A. Muthusamy
Discussiones Mathematicae Graph Theory, Tome 36 (2016), p. 783-796 / Harvested from The Polish Digital Mathematics Library

Bermond conjectured that if G is Hamilton cycle decomposable, then L(G), the line graph of G, is Hamilton cycle decomposable. In this paper, we construct a perfect set of Euler tours for the complete tripartite graph Kp,p,p for any prime p and hence prove Bermond’s conjecture for G = Kp,p,p.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:287108
@article{bwmeta1.element.doi-10_7151_dmgt_1889,
     author = {T. Govindan and A. Muthusamy},
     title = {Perfect Set of Euler Tours of Kp,p,p},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {36},
     year = {2016},
     pages = {783-796},
     zbl = {1350.05136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1889}
}
T. Govindan; A. Muthusamy. Perfect Set of Euler Tours of Kp,p,p. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 783-796. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1889/