Bermond conjectured that if G is Hamilton cycle decomposable, then L(G), the line graph of G, is Hamilton cycle decomposable. In this paper, we construct a perfect set of Euler tours for the complete tripartite graph Kp,p,p for any prime p and hence prove Bermond’s conjecture for G = Kp,p,p.
@article{bwmeta1.element.doi-10_7151_dmgt_1889, author = {T. Govindan and A. Muthusamy}, title = {Perfect Set of Euler Tours of Kp,p,p}, journal = {Discussiones Mathematicae Graph Theory}, volume = {36}, year = {2016}, pages = {783-796}, zbl = {1350.05136}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1889} }
T. Govindan; A. Muthusamy. Perfect Set of Euler Tours of Kp,p,p. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 783-796. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1889/