For any positive integer k, let Ak denote the set of finite abelian groups G such that for any subgroup H of G all Cayley sum graphs CayS(H, S) are integral if |S| = k. A finite abelian group G is called Cayley sum integral if for any subgroup H of G all Cayley sum graphs on H are integral. In this paper, the classes A2 and A3 are classified. As an application, we determine all finite Cayley sum integral groups.
@article{bwmeta1.element.doi-10_7151_dmgt_1886, author = {Xuanlong Ma and Kaishun Wang}, title = {Integral Cayley Sum Graphs and Groups}, journal = {Discussiones Mathematicae Graph Theory}, volume = {36}, year = {2016}, pages = {797-803}, zbl = {1350.05060}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1886} }
Xuanlong Ma; Kaishun Wang. Integral Cayley Sum Graphs and Groups. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 797-803. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1886/