We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.
@article{bwmeta1.element.doi-10_7151_dmgt_1883, author = {Halina Bielak and Sebastian Kieliszek}, title = {The Tur\'an Number of the Graph 2P5}, journal = {Discussiones Mathematicae Graph Theory}, volume = {36}, year = {2016}, pages = {683-694}, zbl = {1339.05195}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1883} }
Halina Bielak; Sebastian Kieliszek. The Turán Number of the Graph 2P5. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 683-694. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1883/
[1] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837-853. doi:10.1017/S0963548311000460[Crossref] | Zbl 1234.05128
[2] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356. doi:10.1007/BF02024498[Crossref] | Zbl 0090.39401
[3] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160. doi:10.1016/0095-8956(75)90080-5[Crossref] | Zbl 0286.05111
[4] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661-667. doi:10.1007/s00373-010-0999-5[Crossref][WoS] | Zbl 1234.05129
[5] F. Harary, Graph Theory (Addison-Wesley, 1969).