The Turán Number of the Graph 2P5
Halina Bielak ; Sebastian Kieliszek
Discussiones Mathematicae Graph Theory, Tome 36 (2016), p. 683-694 / Harvested from The Polish Digital Mathematics Library

We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285663
@article{bwmeta1.element.doi-10_7151_dmgt_1883,
     author = {Halina Bielak and Sebastian Kieliszek},
     title = {The Tur\'an Number of the Graph 2P5},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {36},
     year = {2016},
     pages = {683-694},
     zbl = {1339.05195},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1883}
}
Halina Bielak; Sebastian Kieliszek. The Turán Number of the Graph 2P5. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 683-694. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1883/

[1] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837-853. doi:10.1017/S0963548311000460[Crossref] | Zbl 1234.05128

[2] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356. doi:10.1007/BF02024498[Crossref] | Zbl 0090.39401

[3] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160. doi:10.1016/0095-8956(75)90080-5[Crossref] | Zbl 0286.05111

[4] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661-667. doi:10.1007/s00373-010-0999-5[Crossref][WoS] | Zbl 1234.05129

[5] F. Harary, Graph Theory (Addison-Wesley, 1969).