Extremal Matching Energy of Complements of Trees
Tingzeng Wu ; Weigen Yan ; Heping Zhang
Discussiones Mathematicae Graph Theory, Tome 36 (2016), p. 505-521 / Harvested from The Polish Digital Mathematics Library

Gutman and Wagner proposed the concept of the matching energy which is defined as the sum of the absolute values of the zeros of the matching polynomial of a graph. And they pointed out that the chemical applications of matching energy go back to the 1970s. Let T be a tree with n vertices. In this paper, we characterize the trees whose complements have the maximal, second-maximal and minimal matching energy. Furthermore, we determine the trees with edge-independence number p whose complements have the minimum matching energy for p = 1, 2, . . . , [n/2]. When we restrict our consideration to all trees with a perfect matching, we determine the trees whose complements have the second-maximal matching energy.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285395
@article{bwmeta1.element.doi-10_7151_dmgt_1869,
     author = {Tingzeng Wu and Weigen Yan and Heping Zhang},
     title = {Extremal Matching Energy of Complements of Trees},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {36},
     year = {2016},
     pages = {505-521},
     zbl = {1339.05329},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1869}
}
Tingzeng Wu; Weigen Yan; Heping Zhang. Extremal Matching Energy of Complements of Trees. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 505-521. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1869/

[1] J. Aihara, A new definition of Dewar-type resonance energies, J. Amer. Chem. Soc. 98 (1976) 2750-2758. doi:10.1021/ja00426a013[Crossref]

[2] L. Chen and Y. Shi, The maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem. 73 (2015) 105-119.

[3] L. Chen, J. Liu and Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter , Complexity 21 (2015) 224-238. doi:10.1002/cplx.21599[Crossref][WoS]

[4] D. Cvetković, M. Doob, I. Gutman and A. Torgašev, Recent Results in the Theory of Graph Spectra (North-Holland, Amsterdam, 1988). | Zbl 0634.05054

[5] M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw-Hill, New York, 1969).

[6] E.J. Farrell, An introduction to matching polynomials, J. Combin. Theory Ser. B 27 (1979) 75-86. doi:10.1016/0095-8956(79)90070-4[Crossref]

[7] C.D. Godsil, Algebraic Combinatorics (Chapman and Hall, New York, 1993).

[8] C.D. Godsil and I. Gutman, On the theory of the matching polynomial , J. Graph Theory 5 (1981) 137-144. doi:10.1002/jgt.3190050203[Crossref]

[9] I. Gutman, The matching polynomial , MATCH Commun. Math. Comput. Chem. 6 (1979) 75-91. | Zbl 0436.05053

[10] I. Gutman and S. Wagner, The matching energy of a graph, Discrete Appl. Math. 160 (2012) 2177-2187. doi:10.1016/j.dam.2012.06.001[WoS][Crossref] | Zbl 1252.05120

[11] I. Gutman, The energy of a graph: old and new results, in: Algebraic Combina- torics and Applications, A. Betten, A. Kohnert, R. Laue, A. Wassermann (Ed(s)), (Springer-Verlag, Berlin, 2001) 196-211. doi:10.1007/978-3-642-59448-9 13[Crossref] | Zbl 0974.05054

[12] I. Gutman, X. Li and J. Zhang, Graph energy, in: Analysis of Complex Networks From Biology to Linguistics, M. Dehmer, F. Emmert-Streib (Ed(s)), (Wiley-VCH, Weinheim, 2009) 145-174. doi:10.1002/9783527627981.ch7[Crossref]

[13] S. Ji, X. Li and Y. Shi, Extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 697-706. | Zbl 1299.05220

[14] H. Li, Y. Zhou and L. Su, Graphs with extremal matching energies and prescribed parameters, MATCH Commun. Math. Comput. Chem. 72 (2014) 239-248.

[15] S. Li and W. Yan, The matching energy of graphs with given parameters, Discrete Appl. Math. 162 (2014) 415-420. doi:10.1016/j.dam.2013.09.014[WoS][Crossref] | Zbl 1300.05162

[16] X. Li, Y. Shi and I. Gutman, Graph Energy (Springer, New York, 2012). doi:10.1007/978-1-4614-4220-2[Crossref]

[17] L. Lovász, Combinatorial Problems and Exercises, Second Edition (Budapest, Akad´emiai Kiad´o, 1993). | Zbl 0785.05001

[18] D.B. West, Introduction to Graph Theory, Second Edition (Pearson Education, Singapore, 2001).

[19] T. Wu, On the maximal matching energy of graphs, J. East China Norm. Univ. 1 (2015) 136-141.

[20] K. Xu, Z. Zheng and K.C. Das, Extremal t-apex trees with respect to matching energy, Complexity (2015), in press. doi:10.1002/cplx.21651[Crossref]

[21] K. Xu, K.C. Das and Z. Zheng, The minimum matching energy of (n,m)-graphs with a given matching number , MATCH Commun. Math. Comput. Chem. 73 (2015) 93-104.

[22] W. Yan, Y. Yeh and F. Zhang, Ordering the complements of trees by the number of maximum matchings, J. Quan. Chem. 1055 (2005) 131-141. doi:10.1002/qua.20688[Crossref]