3-Paths in Graphs with Bounded Average Degree
Stanislav Jendrol′ ; Mária Maceková ; Mickaël Montassier ; Roman Soták
Discussiones Mathematicae Graph Theory, Tome 36 (2016), p. 339-353 / Harvested from The Polish Digital Mathematics Library

In this paper we study the existence of unavoidable paths on three vertices in sparse graphs. A path uvw on three vertices u, v, and w is of type (i, j, k) if the degree of u (respectively v, w) is at most i (respectively j, k). We prove that every graph with minimum degree at least 2 and average degree strictly less than m contains a path of one of the types [...] Moreover, no parameter of this description can be improved.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:277118
@article{bwmeta1.element.doi-10_7151_dmgt_1859,
     author = {Stanislav Jendrol' and Maria Macekova and Mickael Montassier and Roman Sotak},
     title = {3-Paths in Graphs with Bounded Average Degree},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {36},
     year = {2016},
     pages = {339-353},
     zbl = {1338.05054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1859}
}
Stanislav Jendrol′; Mária Maceková; Mickaël Montassier; Roman Soták. 3-Paths in Graphs with Bounded Average Degree. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 339-353. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1859/