A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.
@article{bwmeta1.element.doi-10_7151_dmgt_1849, author = {Jaroslav Ivan\v co}, title = {Supermagic Generalized Double Graphs 1}, journal = {Discussiones Mathematicae Graph Theory}, volume = {36}, year = {2016}, pages = {211-225}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1849} }
Jaroslav Ivančo. Supermagic Generalized Double Graphs 1. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 211-225. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1849/
[1] L’. Bezegová and J. Ivančo, An extension of regular supermagic graphs, Discrete Math. 310 (2010) 3571–3578. doi:10.1016/j.disc.2010.09.005[Crossref] | Zbl 1200.05199
[2] L’. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428–2436. doi:10.1016/j.disc.2011.07.014[Crossref] | Zbl 1238.05226
[3] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: Graphentheorie III, K. Wagner, R. Bodendiek (Ed(s)), (BI-Wiss. Verl., Mannheim, 1993).
[4] R. Bodendiek and G. Walther, On arithmetic antimagic edge labelings of graphs, Mitt. Math. Ges. Hamburg 17 (1998) 85–99. | Zbl 0946.05075
[5] F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984) 487–499. doi:10.1002/jgt.3190080406[Crossref] | Zbl 0549.05048
[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6. | Zbl 0953.05067
[7] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99–114. | Zbl 0963.05121
[8] J. Ivančo, A construction of supermagic graphs, AKCE Int. J. Graphs Comb. 6 (2009) 91–102. | Zbl 1210.05145
[9] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177–186. | Zbl 1136.05065
[10] E. Munarini, C.P. Cippo, A. Scagliola and N.Z. Salvi, Double graphs, Discrete Math. 308 (2008) 242–254. doi:10.1016/j.disc.2006.11.038[WoS][Crossref] | Zbl 1131.05042
[11] J. Sedláček, Problem 27, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice (Praha, 1963) 163–164.
[12] A. Semaničová, On magic and supermagic circulant graphs, Discrete Math. 306 (2006) 2263–2269. doi:10.1016/j.disc.2006.04.011[Crossref] | Zbl 1103.05078
[13] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031–1059. doi:10.4153/CJM-1966-104-7[Crossref] | Zbl 0149.21401
[14] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427–438. doi:10.4153/CJM-1967-035-9[Crossref] | Zbl 0162.27801