A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs
Wojciech Wideł
Discussiones Mathematicae Graph Theory, Tome 36 (2016), p. 173-184 / Harvested from The Polish Digital Mathematics Library

Let G be a graph on n vertices and let H be a given graph. We say that G is pancyclic, if it contains cycles of all lengths from 3 up to n, and that it is H-f1-heavy, if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies [...] min⁡dG(u),dG(v)≥n+12 min{dG(u),dG(v)}n+12 . In this paper we prove that every 2-connected K1,3, P5-f1-heavy graph is pancyclic. This result completes the answer to the problem of finding f1-heavy pairs of subgraphs implying pancyclicity of 2-connected graphs.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:276967
@article{bwmeta1.element.doi-10_7151_dmgt_1840,
     author = {Wojciech Wide\l },
     title = {A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {36},
     year = {2016},
     pages = {173-184},
     zbl = {1329.05167},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1840}
}
Wojciech Wideł. A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs. Discussiones Mathematicae Graph Theory, Tome 36 (2016) pp. 173-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1840/

[1] P. Bedrossian, Forbidden subgraph and Minimum Degree Conditions for Hamiltonicity, PhD Thesis (Memphis State University, USA, 1991).

[2] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan’s condition for Hamiltonicity, pancyclicity and Hamiltonian connectedness, Discrete Math. 115 (1993) 39–59. doi:10.1016/0012-365X(93)90476-A[Crossref] | Zbl 0773.05075

[3] A. Benhocine and A.P. Wojda, The Geng-Hua Fan conditions for pancyclic or Hamilton-connected graphs, J. Combin. Theory Ser. B 58 (1987) 167–180. doi:10.1016/0095-8956(87)90038-4[Crossref] | Zbl 0613.05038

[4] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84. doi:10.1016/0095-8956(71)90016-5[Crossref] | Zbl 0183.52301

[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan London and Elsevier, 1976).

[6] G. Fan, New su cient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221–227. doi:0.1016/0095-8956(84)90054-6

[7] M. Ferrara, M.S. Jacobson and A. Harris, Cycle lenghts in Hamiltonian graphs with a pair of vertices having large degree sum, Graphs Combin. 26 (2010) 215–223. doi:10.1007/s00373-010-0915-z[Crossref] | Zbl 1230.05179

[8] B. Ning, Pairs of Fan-type heavy subgraphs for pancyclicity of 2-connected graphs, Australas. J. Combin. 58 (2014) 127–136. | Zbl 1296.05115

[9] B. Ning and S. Zhang, Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs, Discrete Math. 313 (2013) 1715–1725. doi:10.1016/j.disc.2013.04.023[Crossref]

[10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for Hamiltonian graphs, J. Combin. Theory Ser. B 45 (1988) 99–107. doi:10.1016/0095-8956(88)90058-5[Crossref] | Zbl 0607.05050