The domination game is played on a graph G by two players who alternately take turns by choosing a vertex such that in each turn at least one previously undominated vertex is dominated. The game is over when each vertex becomes dominated. One of the players, namely Dominator, wants to finish the game as soon as possible, while the other one wants to delay the end. The number of turns when Dominator starts the game on G and both players play optimally is the graph invariant γg(G), named the game domination number. Here we study the γg-critical graphs which are critical with respect to vertex predomination. Besides proving some general properties, we characterize γg-critical graphs with γg = 2 and with γg = 3, moreover for each n we identify the (infinite) class of all γg-critical ones among the nth powers CnN of cycles. Along the way we determine γg(CnN) for all n and N. Results of a computer search for γg-critical trees are presented and several problems and research directions are also listed.
@article{bwmeta1.element.doi-10_7151_dmgt_1839, author = {Csilla Bujt\'as and Sandi Klav\v zar and Ga\v sper Ko\v smrlj}, title = {Domination Game Critical Graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {781-796}, zbl = {1327.05256}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1839} }
Csilla Bujtás; Sandi Klavžar; Gašper Košmrlj. Domination Game Critical Graphs. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 781-796. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1839/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008). doi:10.1007/978-1-84628-970-5[Crossref]
[2] B. Brešar, P. Dorbec, S. Klavžar and G. Košmrlj, Domination game: Effect of edge- and vertex-removal , Discrete Math. 330 (2014) 1-10. doi:10.1016/j.disc.2014.04.015[Crossref][WoS] | Zbl 1295.05152
[3] B.Brešar, S. Klavžar, G. Košmrlj and D.F. Rall, Domination game: extremal families of graphs for the 3/5-conjectures, Discrete Appl. Math. 16 (2013) 1308-1316. doi:10.1016/j.dam.2013.01.025[WoS][Crossref] | Zbl 1287.05088
[4] B. Brešar, S. Klavžar and D.F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979-991. doi:10.1137/100786800[Crossref][WoS] | Zbl 1223.05189
[5] R.C. Brigham, P.Z. Chinn and R.D. Dutton, Vertex domination-critical graphs, Networks 1 (1988) 173-179. doi:10.1002/net.3230180304[Crossref] | Zbl 0658.05042
[6] Cs. Bujtás, Domination game on trees without leaves at distance four, in: Proceedings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, A. Frank, A. Recski, G. Wiener, Eds., June 4-7 (2013) Veszpr´em, Hungary, 73-78.
[7] Cs. Bujtás, Domination game on forests, Discrete Math. 338 (2015) 2220-2228. doi:10.1016/j.disc.2015.05.022[WoS][Crossref]
[8] Cs. Bujtás, On the game domination number of graphs with given minimum degree, Electron. J. Combin. 22 (2015) #P3.29.
[9] T. Burton and D.P. Summer, Domination dot-critical graphs, Discrete Math. 306 (2006) 11-18. doi:10.1016/j.disc.2005.06.029[Crossref]
[10] P. Dorbec, G. Košmrlj and G. Renault, The domination game played on unions of graphs, Discrete Math. 338 (2015) 71-79. doi:10.1016/j.disc.2014.08.024[WoS][Crossref] | Zbl 1302.05117
[11] M. Furuya, Upper bounds on the diameter of domination dot-critical graphs with given connectivity, Discrete Appl. Math. 161 (2013) 2420-2426. doi:10.1016/j.dam.2013.05.011[Crossref][WoS] | Zbl 1285.05137
[12] M. Furuya, The connectivity of domination dot-critical graphs with no critical ver- tices, Discuss. Math. Graph Theory 34 (2014) 683-690. doi:10.7151/dmgt.1752[WoS][Crossref] | Zbl 1303.05136
[13] M.A. Henning, S. Klavžar and D.F. Rall, Total version of the domination game, Graphs Combin. 31 (2015) 1453-1462. doi:10.1007/s00373-014-1470-9[Crossref]
[14] M.A. Henning, S. Klavžar and D.F. Rall, The 4/5 upper bound on the game total domination number, Combinatorica, to appear.
[15] M.A. Henning, O.R. Oellermann and H.C. Swart, Distance domination critical graphs, J. Combin. Math. Combin. Comput. 44 (2003) 33-45. | Zbl 1035.05064
[16] S.R. Jayaram, Minimal dominating sets of cardinality two in a graph, Indian J. Pure Appl. Math. 28 (1997) 43-46. | Zbl 0871.05035
[17] W.B. Kinnersley, D.B. West and R. Zamani, Game domination for grid-like graphs, manuscript, 2012.
[18] W.B. Kinnersley, D.B.West and R. Zamani, Extremal problems for game domination number , SIAM J. Discrete Math. 27 (2013) 2090-2107. doi:10.1137/120884742[WoS][Crossref] | Zbl 1285.05123
[19] G. Košmrlj, Realizations of the game domination number , J. Comb. Optim. 28 (2014) 447-461. doi:10.1007/s10878-012-9572-x[Crossref][WoS] | Zbl 1303.91051
[20] X. Li and B. Wei, Lower bounds on the number of edges in edge-chromatic-critical graphs with fixed maximum degrees, Discrete Math. 334 (2014) 1-12. doi:10.1016/j.disc.2014.06.017[Crossref][WoS] | Zbl 1298.05126
[21] L. Lovász and M.D. Plummer, Matching Theory (AMS Chelsea Publishing, Providence, RI, 2009).
[22] W. Pegden, Critical graphs without triangles: an optimum density construction, Combinatorica 33 (2013) 495-513. doi:10.1007/s00493-013-2440-1[Crossref][WoS] | Zbl 06270640
[23] F. Tian and FJ.-M. Xu, Distance domination-critical graphs, Appl. Math. Lett. 21 (2008) 416-420. doi:10.1016/j.aml.2007.05.013[Crossref][WoS] | Zbl 1145.05045
[24] D.B. West, Introduction to Graph Theory (Prentice Hall, Inc., Upper Saddle River, NJ, 1996). | Zbl 0845.05001