On Super (a, d)-H-Antimagic Total Covering of Star Related Graphs
K.M. Kathiresan ; S. David Laurence
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 755-764 / Harvested from The Polish Digital Mathematics Library

Let G = (V (G),E(G)) be a simple graph and H be a subgraph of G. G admits an H-covering, if every edge in E(G) belongs to at least one subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a bijection λ: V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G)| + |E(G)|} such that for all subgraphs H′ isomorphic to H, the H′ weights [...] constitute an arithmetic progression a, a+d, a+2d, . . . , a+(n−1)d where a and d are positive integers and n is the number of subgraphs of G isomorphic to H. Additionally, the labeling λ is called a super (a, d)-H-antimagic total labeling if λ(V (G)) = {1, 2, 3, . . . , |V (G)|}. In this paper we study super (a, d)-H-antimagic total labelings of star related graphs Gu[Sn] and caterpillars.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276026
@article{bwmeta1.element.doi-10_7151_dmgt_1832,
     author = {K.M. Kathiresan and S. David Laurence},
     title = {On Super (a, d)-H-Antimagic Total Covering of Star Related Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {755-764},
     zbl = {1327.05297},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1832}
}
K.M. Kathiresan; S. David Laurence. On Super (a, d)-H-Antimagic Total Covering of Star Related Graphs. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 755-764. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1832/

[1] A. Gutierrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005) 43-56. | Zbl 1101.05058

[2] N. Inayah, A.N.M. Solmankl and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 273-281. | Zbl 1197.05117

[3] N. Inayah, A. Llado and J. Moragas, Magic and antimagic H-decompositions, Dis- crete Math. 312 (2012) 1367-1371. doi:10.1016/j.disc.2011.11.041[Crossref] | Zbl 1237.05182

[4] N. Inayah, R. Simanjuntak and A.N.M. Salman, Super (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57 (2013) 127-138. | Zbl 1293.05335

[5] A. Kotzig and A. Rosa, Magic valuations of finite graph, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1[Crossref] | Zbl 0213.26203

[6] A. Llado and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007) 2925-2933. doi:10.1016/j.disc.2007.03.007[Crossref] | Zbl 1127.05090

[7] T.K. Maryati, E.T. Baskoro and A.N.M. Salman, Ph-supermagic labelings some trees, J. Combin. Math. Combin. Comput. 65 (2008) 197-204. | Zbl 1171.05045

[8] M. Roswitha and E.T. Baskoro, H-magic covering on some classes of graphs, AIP Conf. Proc. 1450 (2012) 135-138. doi:10.1063/1.4724129 [Crossref]