Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths
Jonelle Hook
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 689-701 / Harvested from The Polish Digital Mathematics Library

The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r∗(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This classification will be used in the proof of r∗(Pn, Pm).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275867
@article{bwmeta1.element.doi-10_7151_dmgt_1827,
     author = {Jonelle Hook},
     title = {
      Critical Graphs for R(P
      n
      , P
      m
      ) and the Star-Critical Ramsey Number for Paths
    },
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {689-701},
     zbl = {1327.05228},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1827}
}
Jonelle Hook. 
      Critical Graphs for R(P
      n
      , P
      m
      ) and the Star-Critical Ramsey Number for Paths
    . Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 689-701. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1827/

[1] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167-170. | Zbl 0163.45502

[2] J. Hook, The classification of critical graphs and star-critical Ramsey numbers (Ph.D. Thesis, Lehigh University, 2010).

[3] J. Hook and G. Isaak, Star-critical Ramsey numbers, Discrete Appl. Math. 159 (2011) 328-334. doi:10.1016/j.dam.2010.11.007[Crossref] | Zbl 1207.05212

[4] R.J. Faudree, S.L. Lawrence, T.D. Parsons and R.H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) 269-277. doi:10.1016/0012-365X(74)90122-8 | Zbl 0293.05120

[5] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329. doi:10.1016/0012-365X(74)90151-4 | Zbl 0294.05122

[6] D.B. West, Introduction to Graph Theory (Second Ed., Prentice Hall, Upper Saddle River, New Jersey, 2000).