In this note, we give an easy and short proof for the theorem by Park and Kim stating that the hypercompetition numbers of hypergraphs with maximum degree at most two is at most two.
@article{bwmeta1.element.doi-10_7151_dmgt_1826, author = {Yoshio Sano}, title = {On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {595-598}, zbl = {1317.05078}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1826} }
Yoshio Sano. On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 595-598. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1826/
[1] B. Park and S.-R. Kim, On Opsut’s conjecture for hypercompetition numbers of hypergraphs, Discrete Appl. Math. 160 (2012) 2286-2293. doi:10.1016/j.dam.2012.05.009[WoS][Crossref] | Zbl 1252.05156
[2] B. Park and Y. Sano, On the hypercompetition numbers of hypergraphs, Ars Combin. 100 (2011) 151-159. | Zbl 1265.05449
[3] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329. doi:10.1016/j.dam.2004.02.010[Crossref]