The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.
@article{bwmeta1.element.doi-10_7151_dmgt_1816, author = {Jorge L. Arocha and Javier Bracho and Natalia Garc\'\i a-Col\'\i n and Isabel Hubard}, title = {Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {483-491}, zbl = {1317.05034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1816} }
Jorge L. Arocha; Javier Bracho; Natalia García-Colín; Isabel Hubard. Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 483-491. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1816/
[1] R. Blind and P. Mani-Levitska, Puzzles and polytope isomorphisms, Aequationes Math. 34 (1987) 287-297. doi:10.1007/BF01830678[Crossref] | Zbl 0634.52005
[2] G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49 (1988) 381-383. doi:10.1016/0097-3165(88)90064-7[Crossref] | Zbl 0673.05087
[3] B. Mohar and A. Vodopivec, On polyhedral embeddings of cubic graphs, Combin. Probab. Comput. 15 (2006) 877-893. doi:10.1017/S0963548306007607[Crossref] | Zbl 1108.05033
[4] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer, (1995). doi:10.1007/978-1-4613-8431-1[Crossref]