Let G be a graph and f : V (G) → {2, 3, . . .}. A spanning subgraph F is called strong f-star of G if each component of F is a star whose center x satisfies degF (x) ≤ ƒ(x) and F is an induced subgraph of G. In this paper, we prove that G has a strong f-star factor if and only if oddca(G − S) ≤ ∑x∊S ƒ(x) for all S ⊂ V (G), where oddca(G) denotes the number of odd complete-cacti of G.
@article{bwmeta1.element.doi-10_7151_dmgt_1813, author = {Zheng Yan}, title = {Strong f-Star Factors of Graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {475-482}, zbl = {1317.05158}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1813} }
Zheng Yan. Strong ƒ-Star Factors of Graphs. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 475-482. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1813/
[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (Lecture Note in Math. 2031 Springer- Verlag Berlin Heidelberg, 2011). doi:10.1007/978-3-642-21919-1[Crossref] | Zbl 1229.05001
[2] A. Amahashi and M. Kano, On factors with given components, Discrete Math. 42 (1982) 1-6. doi:10.1016/0012-365X(82)90048-6[Crossref] | Zbl 0525.05048
[3] C. Berge and M. Las Vergnas, On the existence of subgraphs with degree constraints, Indag. Math. Proc. 81 (1978) 165-176. doi:10.1016/S1385-7258(78)80007-9[Crossref]
[4] Y. Egawa, M. Kano and A.K. Kelmans, Star partitions of graphs, J. Graph Theory 25 (1997) 185-190. doi:10.1002/(SICI)1097-0118(199707)25:3h185::AID-JGT2i3.0.CO;2-H[Crossref] | Zbl 0877.05045
[5] J. Folkman and D.R. Fulkerson, Flows in infinite graphs, J. Combin. Theory 8 (1970) 30-44. doi:10.1016/S0021-9800(70)80006-0[Crossref] | Zbl 0185.27904
[6] M. Las Vergnas, An extension of Tutte’s 1-factor theorem, Discrete Math. 23 (1978) 241-255. doi:10.1016/0012-365X(78)90006-7[Crossref]
[7] A.K. Kelmans, Optimal packing of induced stars in a graph, RUTCOR Research Report 26-94, Rutgers University (1994) 1-25.
[8] A. Saito and M. Watanabe, Partitioning graphs into induced stars, Ars Combin. 36 (1993) 3-6. | Zbl 0794.05107