In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition.
@article{bwmeta1.element.doi-10_7151_dmgt_1804, author = {Jens-P. Bode and Anika Fricke and Arnfried Kemnitz}, title = {Improved Sufficient Conditions for Hamiltonian Properties}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {329-334}, zbl = {1311.05101}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1804} }
Jens-P. Bode; Anika Fricke; Arnfried Kemnitz. Improved Sufficient Conditions for Hamiltonian Properties. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 329-334. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1804/
[1] J.-P. Bode, A. Kemnitz, I. Schiermeyer and A. Schwarz, Generalizing Bondy’s theorems on sufficient conditions for Hamiltonian properties, Congr. Numer. 203 (2010) 5-13. | Zbl 1229.05191
[2] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16 (Department of Combinatorics and Optimization, Faculty of Mathe- matics, University of Waterloo, Waterloo, Ontario, Canada, 1980).
[3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135. doi:10.1016/0012-365X(76)90078-9[Crossref] | Zbl 0331.05138
[4] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113. doi:10.1016/0012-365X(72)90079-9[Crossref]
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. s3-2 (1952) 69-81. doi:10.1112/plms/s3-2.1.69[Crossref] | Zbl 0047.17001
[6] P. Fraisse, D≥-cycles and their applications for Hamiltonian graphs (LRI, Rapport de Recherche 276, Centre d’Orsay, Université de Paris-Sud, 1986).
[7] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[8] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27. | Zbl 0106.37103