Characterizing which Powers of Hypercubes and Folded Hyper- cubes Are Divisor Graphs
Eman A. AbuHijleh ; Omar A. AbuGhneim ; Hasan Al-Ezeh
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 301-311 / Harvested from The Polish Digital Mathematics Library

In this paper, we show that Qkn is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Qkn is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQn is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQn is not a divisor graph. For n ≥ 5, we show that (FQn)k is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271090
@article{bwmeta1.element.doi-10_7151_dmgt_1801,
     author = {Eman A. AbuHijleh and Omar A. AbuGhneim and Hasan Al-Ezeh},
     title = {Characterizing which Powers of Hypercubes and Folded Hyper- cubes Are Divisor Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {301-311},
     zbl = {1311.05045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1801}
}
Eman A. AbuHijleh; Omar A. AbuGhneim; Hasan Al-Ezeh. Characterizing which Powers of Hypercubes and Folded Hyper- cubes Are Divisor Graphs. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 301-311. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1801/

[1] E.A. AbuHijleh, O.A. AbuGhneim and H. Al-Ezeh, Characterizing when powers of a caterpillar are divisor graphs, Ars Combin. 113 (2014) 85-95.

[2] S. Aladdasi, O.A. AbuGhneim and H. Al-Ezeh, Divisor orientations of powers of paths and powers of cycles, Ars Combin. 94 (2010) 371-380.

[3] S. Aladdasi, O.A. AbuGhneim and H. Al-Ezeh, Characterizing powers of cycles that are divisor graphs, Ars Combin. 97 (2010) 447-451.

[4] S. Al-Addasi, O.A. AbuGhneim and H. Al-Ezeh, Merger and vertex splitting in divisor graphs, Int. Math. Forum 5 (2010) 1861-1869. | Zbl 1217.05196

[5] S. Aladdasi, O.A. AbuGhneim and H. Al-Ezeh, Further new properties of divisor graphs, J. Combin. Math. Combin. Comput. 81 (2012) 261-272.

[6] G. Agnarsson, R. Greenlaw, Graph Theory: Modeling Applications and Algorithms (Pearson, NJ, USA, 2007).

[7] G. Chartrand, R. Muntean, V. Seanpholphat and P. Zang, Which graphs are divisor graphs, Congr. Numer. 151 (2001) 180-200.

[8] P. Erdős, R. Frued and N. Hegyvári, Arithmetical properties of permutations of integers, Acta Math. Hungar. 41 (1983) 169-176. doi:10.1007/BF01994075[Crossref] | Zbl 0518.10063

[9] S.Y. Hsieh, C.N. Kuo, Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes, Comput. Math. Appl. 53 (2006) 1040-1044. doi:10.1016/j.camwa.2006.10.033[WoS][Crossref]

[10] M. Kobeissi, M. Mollard, Disjoint cycles and spanning graphs of hypercubes, Discrete Math. 288 (2004) 73-87. doi:10.1016/j.disc.2004.08.005[Crossref] | Zbl 1057.05049

[11] O. Melnikov, V. Sarvanov, R. Tyshkevich, V. Yemelichev and I. Zverovich, Exercises in Graph Theory (Netherlands, Kluwer Academic Publishers, 1998). doi:10.1007/978-94-017-1514-0[Crossref] | Zbl 0913.05037

[12] A.D. Pollington, There is a long path in the divisor graph, Ars Combin. 16-B (1983) 303-304. | Zbl 0536.05041

[13] C. Pomerance, On the longest simple path in the divisor graph, Congr. Numer. 40 (1983) 291-304. | Zbl 0546.05038

[14] G.S. Singh, G. Santhosh, Divisor graph-I, preprint.