As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335-341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311-317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.
@article{bwmeta1.element.doi-10_7151_dmgt_1800, author = {Felix Joos}, title = {A Note on Longest Paths in Circular Arc Graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {419-426}, zbl = {1317.05102}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1800} }
Felix Joos. A Note on Longest Paths in Circular Arc Graphs. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 419-426. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1800/
[1] P.N. Balister, E. Győri, J. Lehel and R.H. Schelp, Longest paths in circular arc graphs, Combin. Probab. Comput. 13 (2004) 311-317. doi:10.1017/S0963548304006145[Crossref] | Zbl 1051.05053
[2] T. Gallai, Problem 4, in: Theory of graphs, Proceedings of the Colloquium held at Tihany, Hungary, September, 1966,. P. Erdős and G. Katona Eds., Academic Press, New York-London; Akadmiai Kiad, Budapest (1968).
[3] J.M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Process. Lett. 20 (1985) 201-206. doi:10.1016/0020-0190(85)90050-X[Crossref]
[4] D. Rautenbach and J.-S. Sereni, Transversals of longest paths and cycles, SIAM J. Discrete Math. 28 (2014) 335-341. doi:10.1137/130910658[Crossref][WoS] | Zbl 1293.05183
[5] A. Shabbira, C.T. Zamfirescu and T.I. Zamfirescu, Intersecting longest paths and longest cycles: A survey, Electron. J. Graph Theory Appl. 1 (2013) 56-76. doi:10.5614/ejgta.2013.1.1.6 [Crossref] | Zbl 1306.05121