Dynamic monopolies in graphs have been studied as a model for spreading processes within networks. Together with their dual notion, the generalized degenerate sets, they form the immediate generalization of the classical notions of vertex covers and independent sets in a graph. We present results concerning dynamic monopolies in graphs of given average threshold values extending and generalizing previous results of Khoshkhah et al. [On dynamic monopolies of graphs: The average and strict majority thresholds, Discrete Optimization 9 (2012) 77-83] and Zaker [Generalized degeneracy, dynamic monopolies and maximum degenerate subgraphs, Discrete Appl. Math. 161 (2013) 2716-2723].
@article{bwmeta1.element.doi-10_7151_dmgt_1788, author = {Carmen C. Centeno and Dieter Rautenbach}, title = {Remarks on Dynamic Monopolies with Given Average Thresholds}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {133-140}, zbl = {1307.05172}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1788} }
Carmen C. Centeno; Dieter Rautenbach. Remarks on Dynamic Monopolies with Given Average Thresholds. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 133-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1788/
[1] N. Alon, J. Kahn and P.D. Seymour, Large induced degenerate subgraphs, Graphs Combin. 3 (1987) 203-211. doi:10.1007/BF01788542[Crossref] | Zbl 0624.05039
[2] N. Alon, D. Mubayi and R. Thomas, Large induced forests in sparse graphs, J. Graph Theory 38 (2001) 113-123. doi:10.1002/jgt.1028[Crossref] | Zbl 0986.05060
[3] P. Borowiecki, F. G¨oring, J. Harant and D. Rautenbach, The potential of greed for independence, J. Graph Theory 71 (2012) 245-259. doi:10.1002/jgt.20644[Crossref] | Zbl 1254.05135
[4] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197. doi:10.1017/S030500410002168X[Crossref]
[5] Y. Caro, New results on the independence number, Technical Report, Tel-Aviv University, 1979.
[6] K. Khoshkhah, H. Soltani and M. Zaker, On dynamic monopolies of graphs: The average and strict majority thresholds, Discrete Optimization 9 (2012) 77-83. doi:10.1016/j.disopt.2012.02.001[WoS][Crossref] | Zbl 1246.91115
[7] V.K. Wei, A lower bound on the stability number of a simple graph, Technical Memorandum, TM 81-11217-9, Bell Laboratories, 1981.
[8] M. Zaker, Generalized degeneracy, dynamic monopolies and maximum degenerate subgraphs, Discrete Appl. Math. 161 (2013) 2716-2723. doi:10.1016/j.dam.2013.04.012 [WoS][Crossref]