Optimal Backbone Coloring of Split Graphs with Matching Backbones
Krzysztof Turowski
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 157-169 / Harvested from The Polish Digital Mathematics Library

For a graph G with a given subgraph H, the backbone coloring is defined as the mapping c : V (G) → N+ such that |c(u) − c(v)| ≥ 2 for each edge {u, v} ∈ E(H) and |c(u) − c(v)| ≥ 1 for each edge {u, v} ∈ E(G). The backbone chromatic number BBC(G,H) is the smallest integer k such that there exists a backbone coloring with maxv∈V (G) c(v) = k. In this paper, we present the algorithm for the backbone coloring of split graphs with matching backbone.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271216
@article{bwmeta1.element.doi-10_7151_dmgt_1786,
     author = {Krzysztof Turowski},
     title = {Optimal Backbone Coloring of Split Graphs with Matching Backbones},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {157-169},
     zbl = {1307.05078},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1786}
}
Krzysztof Turowski. Optimal Backbone Coloring of Split Graphs with Matching Backbones. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 157-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1786/

[1] P. Hammer and S. Földes, Split graphs, Congr. Numer. XIX (1977) 311-315.

[2] J. Miškuf, R. Skrekovski and M. Tancer, Backbone colorings of graphs with bounded degree, Discrete Appl. Math. 158 (2010) 534-542. doi:10.1016/j.dam.2009.11.015[Crossref][WoS] | Zbl 1215.05071

[3] H. Broersma, F.V. Fomin, P.A. Golovach and G.J. Woeginger, Backbone colorings for graphs: tree and path backbones, J. Graph Theory 55 (2007) 137-152. doi:10.1002/jgt.20228[Crossref][WoS] | Zbl 1118.05031

[4] H. Broersma, A general framework for coloring problems: old results, new results, and open problems, in: Combinatorial Geometry and Graph Theory: Indonesia- Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, J. Akiyama, E.T. Baskoro, M. Kano (Ed(s)), (Springer, 2003) 65-79.

[5] R. Janczewski, On an interrelation between travelling salesman problem and T- coloring of graphs, Proceedings of the Sixth International Conference: Advanced Computer Systems, ACS 1999, Szczecin, Poland (1999) 23-25.