For a graph G = (V,E) and a vertex v ∈ V , let T(v) be a local trace at v, i.e. T(v) is an Eulerian subgraph of G such that every walk W(v), with start vertex v can be extended to an Eulerian tour in T(v). We prove that every maximum edge-disjoint cycle packing Z* of G induces a maximum trace T(v) at v for every v ∈ V . Moreover, if G is Eulerian then sufficient conditions are given that guarantee that the sets of cycles inducing maximum local traces of G also induce a maximum cycle packing of G.
@article{bwmeta1.element.doi-10_7151_dmgt_1785, author = {Peter Recht and Eva-Maria Sprengel}, title = {Maximum Cycle Packing in Eulerian Graphs Using Local Traces}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {121-132}, zbl = {1307.05125}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1785} }
Peter Recht; Eva-Maria Sprengel. Maximum Cycle Packing in Eulerian Graphs Using Local Traces. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 121-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1785/
[1] S. Antonakopulos and L. Zhang, Approximation algorithms for grooming in optical network design, Theoret. Comput. Sci. 412 (2011) 3738-3751. doi:10.1016/j.tcs.2011.03.034[Crossref] | Zbl 1216.68044
[2] F. Bäbler, Über eine spezielle Klasse Euler’scher Graphen, Comment. Math. Helv. 27 (1953) 81-100. doi:10.1007/BF02564555[Crossref] | Zbl 0050.17905
[3] V. Bafna and P.A. Pevzner, Genome rearrangement and sorting by reversals, SIAM J. Comput. 25 (1996) 272-289. doi:10.1137/S0097539793250627[Crossref] | Zbl 0844.68123
[4] A. Caprara, Sorting permutations by reversals and Eulerian cycle decompositions, SIAM J. Discrete Math. 12 (1999) 91-110. doi:10.1137/S089548019731994X[Crossref] | Zbl 0916.68074
[5] A. Caprara, A. Panconesi and R. Rizzi, Packing cycles in undirected Graphs, J. Algorithms 48 (2003) 239-256. doi:10.1016/S0196-6774(03)00052-X[Crossref] | Zbl 1084.05067
[6] G. Fertin, A. Labarre, I. Rusu, ´E. Tannier and S. Vialette, Combinatorics of Genome Rearrangement (MIT Press, Cambridge, Ma., 2009). | Zbl 1170.92022
[7] J. Harant, D. Rautenbach, P. Recht and F. Regen, Packing edge-disjoint cycles in graphs and the cyclomatic number , Discrete Math. 310 (2010) 1456-1462. doi:10.1016/j.disc.2009.07.017[WoS][Crossref] | Zbl 1218.05076
[8] J. Harant, D. Rautenbach, P. Recht, I. Schiermeyer and E.-M. Sprengel, Packing disjoint cycles over vertex cuts, Discrete Math. 310 (2010) 1974-1978. doi:10.1016/j.disc.2010.03.009[Crossref][WoS] | Zbl 1222.05121
[9] J. Kececioglu and D. Sankoff, Exact and approximation algorithms for sorting by reversals with application to genome rearrangement , Algorithmica 13 (1997) 180-210. doi:10.1007/BF01188586[Crossref] | Zbl 0831.92014
[10] M. Krivelevich, Z. Nutov, M.R. Salvatpour, J. Yuster and R. Yuster, Approximation algorithms and hardness results for cycle packing problems, ACM Trans. Algorithm 3(4)) (2007) Article 48. | Zbl 1297.05127
[11] O. Ore, A problem regarding the tracing of graphs, Elem. Math. 6 (1951) 49-53. | Zbl 0043.38503
[12] P. Recht and E.-M. Sprengel, Packing Euler graphs with traces, in: Operations Research Proceedings, Klatte, Lüthi and Schmedders (Ed(s)), (Heidelberg, New York, Dordrecht, London, Springer, 2011) 53-58. | Zbl 1306.05137