Fractional Aspects of the Erdős-Faber-Lovász Conjecture
John Bosica ; Claude Tardif
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 197-202 / Harvested from The Polish Digital Mathematics Library

The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where the chromatic number is replaced by the fractional chromatic number. In this note we investigate similar fractional relaxations of the Erdős-Faber-Lovász conjecture, involving variations of the fractional chromatic number. We exhibit some relaxations that can be proved in the spirit of the Kahn-Seymour result, and others that are equivalent to the original conjecture.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271234
@article{bwmeta1.element.doi-10_7151_dmgt_1781,
     author = {John Bosica and Claude Tardif},
     title = {Fractional Aspects of the Erd\H os-Faber-Lov\'asz Conjecture},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {197-202},
     zbl = {1307.05186},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1781}
}
John Bosica; Claude Tardif. Fractional Aspects of the Erdős-Faber-Lovász Conjecture. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 197-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1781/

[1] N.G. de Bruijn and P. Erdős, On a combinatorial problem, Nederl. Akad. Wetensch. | Zbl 0032.24405

Indag. Math 10 (1948) 421-423.

[2] P. Erdős, R.C. Mullin, V.T. Sos and D.R. Stinson, Finite linear spaces and projective planes, Discrete Math. 47 (1983) 49-62. doi:10.1016/0012-365X(83)90071-7[Crossref] | Zbl 0521.51005

[3] J. Kahn, Coloring nearly-disjoint hypergraphs with n+o(n) colors, J. Combin. The- ory (A) 59 (1992) 31-39. doi:10.1016/0097-3165(92)90096-D[Crossref]

[4] J. Kahn and P.D. Seymour, A fractional version of the Erdős-Faber-Lovász conjec- ture, Combinatorica 12 (1992) 155-160. doi:10.1007/BF01204719[Crossref]

[5] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1997).