On a Spanning k-Tree in which Specified Vertices Have Degree Less Than k
Hajime Matsumura
Discussiones Mathematicae Graph Theory, Tome 35 (2015), p. 191-196 / Harvested from The Polish Digital Mathematics Library

A k-tree is a tree with maximum degree at most k. In this paper, we give a degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than k. We denote by σk(G) the minimum value of the degree sum of k independent vertices in a graph G. Let k ≥ 3 and s ≥ 0 be integers, and suppose G is a connected graph and σk(G) ≥ |V (G)|+s−1. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree less than k. The degree condition is sharp.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271232
@article{bwmeta1.element.doi-10_7151_dmgt_1778,
     author = {Hajime Matsumura},
     title = {On a Spanning k-Tree in which Specified Vertices Have Degree Less Than k},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {35},
     year = {2015},
     pages = {191-196},
     zbl = {1307.05052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1778}
}
Hajime Matsumura. On a Spanning k-Tree in which Specified Vertices Have Degree Less Than k. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 191-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1778/

[1] M.N. Ellingham, Y. Nam and H.-J. Voss, Connected (g, f)-factors, J. Graph Theory 39 (2002) 62-75. doi:10.1002/jgt.10019[Crossref] | Zbl 0995.05117

[2] H. Enomoto and K. Ozeki, The independence number condition for the existence of a spanning f-tree, J. Graph Theory 65 (2010) 173-184. doi:10.1002/jgt.20471[Crossref] | Zbl 1222.05023

[3] H. Matsuda and H.Matsumura, On a k-tree containing specified leaves in a graph, Graphs Combin. 22 (2006) 371-381. doi:10.1007/s00373-006-0660-5[WoS][Crossref] | Zbl 1108.05028

[4] H.Matsuda and H.Matsumura, Degree conditions and degree bounded trees, Discrete Math. 309 (2009) 3653-3658. doi:10.1016/j.disc.2007.12.099[Crossref] | Zbl 1226.05090

[5] V. Neumann-Lara and E. Rivera-Campo, Spanning trees with bounded degrees, Com- binatorica 11 (1991) 55-61. doi:10.1007/BF01375473[Crossref][WoS] | Zbl 0763.05030

[6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.

[7] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27. doi:10.2307/2308928[Crossref]

[8] S. Win, Existenz von ger¨usten mit vorgeschriebenem maximalgrad in graphen, Abh. Math. Seminar Univ. Hamburg 43 (1975) 263-267. doi:10.1007/BF02995957[Crossref] | Zbl 0309.05122

[9] S. Win, On a connection between the existence of k-trees and the toughness of a graph, Graphs Combin. 5 (1989) 201-205. doi:10.1007/BF01788671 [Crossref]