In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open packing set if no two vertices of S have a common neighbour in G. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The minimum and maximum cardinalities of a maximal open packing set are respectively called the lower open packing number and the open packing number and are denoted by ρoL and ρo. In this paper, we present some bounds on these parameters.
@article{bwmeta1.element.doi-10_7151_dmgt_1775, author = {I. Sahul Hamid and S. Saravanakumar}, title = {Packing Parameters in Graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {5-16}, zbl = {1307.05183}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1775} }
I. Sahul Hamid; S. Saravanakumar. Packing Parameters in Graphs. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 5-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1775/
[1] N. Biggs, Perfect codes in graphs, J. Combin. Theory (B) 15 (1973) 289-296. doi:10.1016/0095-8956(73)90042-7[Crossref]
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition (CRC Press, Boca Raton, 2005). | Zbl 1057.05001
[3] L. Clark, Perfect domination in random graphs, J. Combin. Math. Combin. Comput. 14 (1993) 173-182. | Zbl 0793.05106
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1988). | Zbl 0890.05002
[5] M.A. Henning, Packing in trees, Discrete Math. 186 (1998) 145-155. doi:10.1016/S0012-365X(97)00228-8 [Crossref]
[6] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. doi:10.2140/pjm.1975.61.225[Crossref] | Zbl 0289.05101
[7] J. Topp and L. Volkmann, On packing and covering number of graphs, Discrete Math. 96 (1991) 229-238. doi:10.1016/0012-365X(91)90316-T [Crossref] | Zbl 0759.05077