A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic number for the direct product G×H, the Cartesian product G□H, and the strong product G⊠H.
@article{bwmeta1.element.doi-10_7151_dmgt_1773, author = {Jennifer Loe and Danielle Middelbrooks and Ashley Morris and Kirsti Wash}, title = {2-Tone Colorings in Graph Products}, journal = {Discussiones Mathematicae Graph Theory}, volume = {35}, year = {2015}, pages = {55-72}, zbl = {1307.05073}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1773} }
Jennifer Loe; Danielle Middelbrooks; Ashley Morris; Kirsti Wash. 2-Tone Colorings in Graph Products. Discussiones Mathematicae Graph Theory, Tome 35 (2015) pp. 55-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1773/
[1] A. Bickle and B. Phillips, t-tone colorings of graphs, submitted (2011).
[2] D. Cranston, J. Kim and W. Kinnersley, New results in t-tone colorings of graphs, Electron. J. Comb. 20(2) (2013) #17. | Zbl 1266.05009
[3] D. Bal, P. Bennett, A. Dudek and A. Frieze, The t-tone chromatic number of random graphs, Graphs Combin. 30 (2013) 1073-1086. doi:10.1007/s00373-013-1341-9[Crossref][WoS] | Zbl 1298.05100
[4] N. Fonger, J. Goss, B. Phillips and C. Segroves, Math 6450: Final Report, (2011). http://homepages.wmich.edu/~zhang/finalReport2.pdf
[5] D. West, REGS in Combinatorics. t-tone colorings, (2011). http://www.math.uiuc.edu/~west/regs/ttone.html
[6] R. Hammack, W. Imrich and S. Klavˇzar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, 2011). | Zbl 1283.05001
[7] S. Krumke, M. Marathe and S. Ravi, Approximation algorithms for channel assignment in radio networks, Wireless Networks 7 (2001) 575-584. doi:10.1023/A:1012311216333[Crossref] | Zbl 0996.68009
[8] V. Vazirani, Approximation Algorithms (Springer, 2001). | Zbl 0999.68546