The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.
@article{bwmeta1.element.doi-10_7151_dmgt_1772, author = {Hongyan Lu and Jing Luo and Zhongxun Zhu}, title = {Extremal Unicyclic Graphs With Minimal Distance Spectral Radius}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {735-749}, zbl = {1303.05092}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1772} }
Hongyan Lu; Jing Luo; Zhongxun Zhu. Extremal Unicyclic Graphs With Minimal Distance Spectral Radius. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 735-749. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1772/
[1] A.T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors, J. Chem. Inf. Comput. Sci. 31 (1991) 517-523. doi:10.1021/ci00004a014
[2] R.B. Bapat, Distance matrix and Laplacian of a tree with attached graphs, Linear Algebra Appl. 411 (2005) 295-308. doi:10.1016/j.laa.2004.06.017 | Zbl 1075.05052
[3] R.B. Bapat, S.J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209. doi:10.1016/j.laa.2004.05.011 | Zbl 1064.05097
[4] B. Bollob´as, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4
[5] V. Consonni and R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14. | Zbl 1273.92080
[6] I. Gutman and M. Medeleanu, On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane, Indian J. Chem. (A) 37 (1998) 569-573.
[7] A. Ilić, Distance spectral radius of trees with given matching number , Discrete Appl. Math. 158 (2010) 1799-1806. doi:10.1016/j.dam.2010.06.018 | Zbl 1208.05018
[8] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl. 430 (2009) 106-113. doi:10.1016/j.laa.2008.07.005 | Zbl 1165.05019
[9] Z. Liu, On spectral radius of the distance matrix , Appl. Anal. Discrete Math. 4 (2010) 269-277. doi:10.2298/AADM100428020L | Zbl 1265.05434
[10] D. Stevanović and A. Ili´c, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168-179. | Zbl 1189.05050
[11] G. Yu, Y. Wu, Y. Zhang and J. Shu, Some graft transformations and its application on a distance spectrum, Discrete Math. 311 (2011) 2117-2123. doi:10.1016/j.disc.2011.05.040 | Zbl 1226.05112
[12] X. Zhang and C. Godsil, Connectivity and minimal distance spectral radius, Linear Multilinear Algebra 59 (2011) 745-754. doi:10.1080/03081087.2010.499512
[13] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH Com- mun. Math. Comput. Chem. 58 (2007) 657-662. | Zbl 1199.05102
[14] B. Zhou and N. Trinajsti´c, On the largest eigenvalue of the distance matrix of a connected graph, Chem. Phys. Lett. 447 (2007) 384-387. doi:10.1016/j.cplett.2007.09.048