We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, and to the lexicographic product of two known graphs are also given.
@article{bwmeta1.element.doi-10_7151_dmgt_1770, author = {Isaac Birnbaum and Megan Kuneli and Robyn McDonald and Katherine Urabe and Oscar Vega}, title = {The Well-Covered Dimension Of Products Of Graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {811-827}, zbl = {1303.05164}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1770} }
Isaac Birnbaum; Megan Kuneli; Robyn McDonald; Katherine Urabe; Oscar Vega. The Well-Covered Dimension Of Products Of Graphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 811-827. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1770/
[1] J.I. Brown and R.J. Nowakowski, Well-covered vector spaces of graphs, SIAM J. Discrete Math. 19 (2005) 952-965. doi:10.1137/S0895480101393039
[2] Y. Caro, M.N. Ellingham and J.E. Ramey, Local structure when all maximal inde- pendent sets have equal weight , SIAM J. Discrete Math. 11 (1998) 644-654. doi:10.1137/S0895480196300479 | Zbl 0914.05061
[3] Y. Caro and R. Yuster, The uniformity space of hypergraphs and its applications, Discrete Math. 202 (1999) 1-19. doi:10.1016/S0012-365X(98)00344-6 | Zbl 0932.05069
[4] A. Ovetsky, On the well-coveredness of Cartesian products of graphs, Discrete Math. 309 (2009) 238-246. doi:10.1016/j.disc.2007.12.083 | Zbl 1229.05239
[5] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98. doi:10.1016/S0021-9800(70)80011-4
[6] D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, Upper Saddle River, 2001).