Color Energy Of A Unitary Cayley Graph
Chandrashekar Adiga ; E. Sampathkumar ; M.A. Sriraj
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 707-721 / Harvested from The Polish Digital Mathematics Library

Let G be a vertex colored graph. The minimum number χ(G) of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G) and computed the color energy of few families of graphs with χ(G) colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xn)c and some gcd-graphs.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269826
@article{bwmeta1.element.doi-10_7151_dmgt_1767,
     author = {Chandrashekar Adiga and E. Sampathkumar and M.A. Sriraj},
     title = {Color Energy Of A Unitary Cayley Graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {707-721},
     zbl = {1303.05056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1767}
}
Chandrashekar Adiga; E. Sampathkumar; M.A. Sriraj. Color Energy Of A Unitary Cayley Graph. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 707-721. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1767/

[1] C. Adiga, E. Sampathkumar, M.A. Sriraj and A.S. Shrikanth, Color energy of a graph, Proc. Jangjeon Math. Soc. 16 3 (2013) 335-351. | Zbl 1306.05140

[2] N. Biggs, Algebraic Graph Theory, Second Edition (Cambridge Mathematical Library, Cambridge University Press, 1993). | Zbl 0284.05101

[3] C. Godsil and G. Royle, Algebraic Graph Theory (Graduate Texts in Mathematics, Springer, 207, 2001). | Zbl 0968.05002

[4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978) 1-22.

[5] G.H. Hardy and E. M. Wright, An Introdution to Theory of Numbers, Fifth Ed. (Oxford University Press New York, 1980).

[6] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) #R45. | Zbl 1121.05059

[7] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881-1889. doi:10.1016/j.laa.2009.06.025 | Zbl 1175.05086

[8] M. Mollahajiaghaei, The eigenvalues and energy of integral circulant graphs, Trans. Combin. 1 (2012) 47-56. | Zbl 1272.05115

[9] E. Sampathkumar and M.A. Sriraj, Vertex labeled/colored graphs, matrices and signed graphs, J. Combin. Inform. System Sci., to appear. | Zbl 1302.05162

[10] W. So, Integral circulant graphs, Discrete Math. 306 (2006) 153-158. doi:10.1016/j.disc.2005.11.006 | Zbl 1084.05045