In 1980, Enomoto et al. proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In this paper, we give a partial sup- port for the correctness of this conjecture by formulating some super (a, d)- edge-antimagic total labelings on a subclass of subdivided stars denoted by T(n, n + 1, 2n + 1, 4n + 2, n5, n6, . . . , nr) for different values of the edge- antimagic labeling parameter d, where n ≥ 3 is odd, nm = 2m−4(4n+1)+1, r ≥ 5 and 5 ≤ m ≤ r.
@article{bwmeta1.element.doi-10_7151_dmgt_1764, author = {Muhammad Javaid}, title = {On Super Edge-Antimagic Total Labeling Of Subdivided Stars}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {691-706}, zbl = {1303.05173}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1764} }
Muhammad Javaid. On Super Edge-Antimagic Total Labeling Of Subdivided Stars. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 691-706. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1764/
[1] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007) 1232-1244. doi:10.1016/j.disc.2005.10.038 | Zbl 1120.05075
[2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229-239. | Zbl 1011.05056
[3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117-128. | Zbl 1140.05049
[4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008).
[5] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109. | Zbl 0918.05090
[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2011) #DS6. | Zbl 0953.05067
[7] M. Hussain, E.T. Baskoro and Slamin, On super edge-magic total labeling of banana trees, Util. Math. 79 (2009) 243-251. | Zbl 1215.05150
[8] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169-177. | Zbl 1267.05230
[9] M. Javaid and A.A. Bhatti, On super (a, d)-edge antimagic total labeling of subdivided stars, Ars Combin. 105 (2012) 503-512. | Zbl 1274.05421
[10] M. Javaid, A.A. Bhatti and M. Hussain, On (a, d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293-303. | Zbl 1264.05119
[11] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183-191. | Zbl 1264.05120
[12] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155-162. | Zbl 1300.05275
[13] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1 | Zbl 0213.26203
[14] A. Kotzig and A. Rosa, Magic Valuation of Complete Graphs (Centre de Recherches Mathematiques, Uni. de Montreal, 1972).
[15] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, in: 16th MCCCC Conference, Carbondale SIU (2002).
[16] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic, College Mathe- matica 17(2) (2001) 41-44.
[17] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic (II), College Math- ematica 20(3) (2004) 51-53.
[18] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math. 43 (2007) 127-136. | Zbl 1175.05116
[19] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star Sn, Util. Math. 81 (2010) 275-284. | Zbl 1214.05153
[20] K.A. Sugeng, M. Miller, Slamin and M. Baˇca, (a, d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169-180. doi:10.1007/978-3-540-30540-8 19 | Zbl 1117.05096
[21] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph label- ings, in: Proc. 11th Australian Workshop on Combin. Algor. 11 (2000) 179-189.
[22] D.B. West, An Introduction to Graph Theory (Prentice Hall, 1996). | Zbl 0845.05001