An Implicit Weighted Degree Condition For Heavy Cycles
Junqing Cai ; Hao Li ; Wantao Ning
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 801-810 / Harvested from The Polish Digital Mathematics Library

For a vertex v in a weighted graph G, idw(v) denotes the implicit weighted degree of v. In this paper, we obtain the following result: Let G be a 2-connected weighted graph which satisfies the following conditions: (a) The implicit weighted degree sum of any three independent vertices is at least t; (b) w(xz) = w(yz) for every vertex z ∈ N(x) ∩ N(y) with xy /∈ E(G); (c) In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a hamiltonian cycle or a cycle of weight at least 2t/3. This generalizes the result of Zhang et al. [9].

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:269817
@article{bwmeta1.element.doi-10_7151_dmgt_1762,
     author = {Junqing Cai and Hao Li and Wantao Ning},
     title = {An Implicit Weighted Degree Condition For Heavy Cycles},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {801-810},
     zbl = {1303.05106},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1762}
}
Junqing Cai; Hao Li; Wantao Ning. An Implicit Weighted Degree Condition For Heavy Cycles. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 801-810. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1762/

[1] J.A. Bondy, Large cycles in graphs, Discrete Math. 1 (1971) 121-132. doi:10.1016/0012-365X(71)90019-7

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan-London, Elsevier-New York, 1976). | Zbl 1226.05083

[3] V. Chvátal and P. Erdős, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113. doi:10.1016/0012-365X(72)90079-9

[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952) 69-81. | Zbl 0047.17001

[5] H. Enomoto, J. Fujisawa and K. Ota, A σk type condition for heavy cycles in weighted graphs, Ars Combin. 76 (2005) 225-232. | Zbl 1164.05389

[6] I. Fournier and P. Fraisse, On a conjecture of Bondy, J. Combin. Theory (B) 39 (1985) 17-26. doi:10.16/0095-8956(85)90035-8 | Zbl 0576.05035

[7] P. Li, Implicit weighted degree condition for heavy paths in weighted graphs, J. Shandong Univ. (Nat. Sci.) 18 (2003) 11-13.

[8] L. Pósa, On the circuits of finite graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl 8 (1963) 355-361. | Zbl 0133.16702

[9] S. Zhang, X. Li and H. Broersma, A σ3 type condition for heavy cycles in weighted graphs, Discuss. Math. Graph Theory 21 (2001) 159-166. doi:10.7151/dmgt.1140 | Zbl 1002.05047

[10] Y. Zhu, H. Li and X. Deng, Implicit-degrees and circumferences, Graphs Combin. 5 (1989) 283-290. doi:10.1007/BF01788680