Degree Sequences of Monocore Graphs
Allan Bickle
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 585-592 / Harvested from The Polish Digital Mathematics Library

A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min {n − 1, k + n − i} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268316
@article{bwmeta1.element.doi-10_7151_dmgt_1759,
     author = {Allan Bickle},
     title = {Degree Sequences of Monocore Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {585-592},
     zbl = {1295.05192},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1759}
}
Allan Bickle. Degree Sequences of Monocore Graphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 585-592. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1759/

[1] M. Altaf-Ul-Amin, K. Nishikata, T. Koma, T.Miyasato, Y. Shinbo, M. Arifuzzaman, C. Wada, M. Maeda, et al., Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences, Genome Informatics 14 (2003) 498-499.

[2] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, A. Vespignani, k-core decomposition: a tool for the visualization of large scale networks, Adv. Neural Inf. Process. Syst. 18 (2006) 41.

[3] G. Bader, C. Hogue, An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics 4 (2003). doi:10.1186/1471-2105-4-2[Crossref][PubMed]

[4] V. Batagelj and M. Zaversnik, An O(m) algorithm for cores decomposition of net- works. http://vlado.fmf.uni-lj.si/pub/networks/doc/cores/cores.pdf. (2002) Last accessed November 25, 2011.

[5] A. Bickle, The k-cores of a Graph (Ph.D. Dissertation, Western Michigan University, 2010).

[6] A. Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 (2012) 659-676. doi:10.7151/dmgt.1637[Crossref] | Zbl 1293.05313

[7] A. Bickle, Cores and shells of graphs, Math. Bohemica 138 (2013) 43-59. | Zbl 1274.05399

[8] B. Bollobas, Extremal Graph Theory (Academic Press, 1978).

[9] M. Borowiecki, J. Ivanˇco, P. Mih´ok and G. Semaniˇsin, Sequences realizable by max- imal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124. doi:10.1002/jgt.3190190112[Crossref]

[10] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th Ed.) (CRC Press, 2005). | Zbl 1057.05001

[11] S. Dorogovtsev, A. Goltsev and J. Mendes, k-core organization of complex networks, Phys. Rev. Lett. 96 (2006).[PubMed][Crossref] | Zbl 1130.94024

[12] Z. Filáková, P. Mihók and G. Semaniˇsin., A note on maximal k-degenerate graphs, Math. Slovaca 47 (1997) 489-498.

[13] M. Gaertler and M. Patrignani, Dynamic analysis of the autonomous system graph, Proc. 2nd International Workshop on Inter-Domain Performance and Simulation (2004) 13-24.

[14] D.R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096. doi:10.4153/CJM-1970-125-1[Crossref] | Zbl 0202.23502

[15] T. Luczak, Size and connectivity of the k-core of a random graph, Discrete Math. 91 (1991) 61-68. doi:10.1016/0012-365X(91)90162-U[Crossref]

[16] J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977) 101-106. | Zbl 0348.05109

[17] S.B. Seidman, Network structure and minimum degree, Soc. Networks 5 (1983) 269-287. doi:10.1016/0378-8733(83)90028-X[Crossref]

[18] J.M.S. Simões-Pereira, A survey of k-degenerate graphs, Graph Theory Newsletter 5 (1976) 1-7. | Zbl 0331.05135

[19] D. West, Introduction to Graph Theory, (2nd Ed.) (Prentice Hall, 2001).

[20] S. Wuchty and E. Almaas, Peeling the yeast protein network, Proteomics 5 (2005) 444-449. doi:10.1002/pmic.200400962 [Crossref][PubMed]