On Twin Edge Colorings of Graphs
Eric Andrews ; Laars Helenius ; Daniel Johnston ; Jonathon VerWys ; Ping Zhang
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 613-627 / Harvested from The Polish Digital Mathematics Library

A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of Zk so that the induced vertex coloring in which the color of a vertex v in G is the sum (in Zk) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268302
@article{bwmeta1.element.doi-10_7151_dmgt_1756,
     author = {Eric Andrews and Laars Helenius and Daniel Johnston and Jonathon VerWys and Ping Zhang},
     title = {On Twin Edge Colorings of Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {613-627},
     zbl = {1305.05068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1756}
}
Eric Andrews; Laars Helenius; Daniel Johnston; Jonathon VerWys; Ping Zhang. On Twin Edge Colorings of Graphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 613-627. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1756/

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001[Crossref] | Zbl 1074.05031

[2] M. Anholcer, S. Cichacz and M. Milaniˇc, Group irregularity strength of connected graphs, J. Comb. Optim., to appear. doi:10.1007/s10878-013-9628-6[Crossref] | Zbl 1316.05078

[3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.

[4] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 5th Edition (Chapman & Hall/CRC, Boca Raton, FL, 2010).

[5] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC, Boca Raton, FL, 2008). doi:10.1201/9781584888017[Crossref] | Zbl 1169.05001

[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6. | Zbl 0953.05067

[7] R.B. Gnana Jothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University (1991).

[8] S.W. Golomb, How to number a graph, in: Graph Theory and Computing R.C. Read (Ed.), (Academic Press, New York, 1972) 23-37. | Zbl 0293.05150

[9] R. Jones, Modular and Graceful Edge Colorings of Graphs, Ph.D. Thesis, Western Michigan University (2011).

[10] R. Jones, K. Kolasinski, F. Fujie-Okamoto and P. Zhang, On modular edge-graceful graphs, Graphs Combin. 29 (2013) 901-912. doi:10.1007/s00373-012-1147-1[Crossref] | Zbl 1268.05174

[11] R. Jones, K. Kolasinski and P. Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput. 80 (2012) 445-455. | Zbl 1247.05207

[12] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001[Crossref] | Zbl 1042.05045

[13] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. Internat. Symposium Rome 1966 (Gordon and Breach, New York 1967) 349-355.

[14] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).