Characterization of Cubic Graphs G with ir t (G) = Ir t (G) = 2
Changiz Eslahchi ; Shahab Haghi ; Nader Jafari
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 559-565 / Harvested from The Polish Digital Mathematics Library

A subset S of vertices in a graph G is called a total irredundant set if, for each vertex v in G, v or one of its neighbors has no neighbor in S −{v}. The total irredundance number, ir(G), is the minimum cardinality of a maximal total irredundant set of G, while the upper total irredundance number, IR(G), is the maximum cardinality of a such set. In this paper we characterize all cubic graphs G with irt(G) = IRt(G) = 2

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268264
@article{bwmeta1.element.doi-10_7151_dmgt_1749,
     author = {Changiz Eslahchi and Shahab Haghi and Nader Jafari},
     title = {
      Characterization of Cubic Graphs G with ir
      t
      (G) = Ir
      t
      (G) = 2
    },
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {559-565},
     zbl = {1305.05173},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1749}
}
Changiz Eslahchi; Shahab Haghi; Nader Jafari. 
      Characterization of Cubic Graphs G with ir
      t
      (G) = Ir
      t
      (G) = 2
    . Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 559-565. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1749/

[1] O. Favaron, T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Total irredundance in graphs, Discrete Math. 256 (2002) 115-127. doi:10.1016/S0012-365X(00)00459-3[Crossref] | Zbl 1007.05074

[2] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Stable and unstable graphs with total irredundance number zero, Ars Combin. 61 (2001) 34-46. | Zbl 1072.05556

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[4] S.M. Hedetniemi, S.T. Hedetniemi and D.P. Jacobs, Total irredundance in graphs: theory and algorithms, Ars Combin. 35 (1993) 271-284. | Zbl 0840.05040

[5] Q.X. Tu and Z.Q. Hu, Structures of regular graphs with total irredundance number zero, Math. Appl. (Wuhan) 18 (2005) 41-44 (in Chinese).