Let G = G1 ∪ G2 be the sum of two simple graphs G1,G2 having a common edge or G = G1 ∪ e1 ∪ e2 ∪ G2 be the sum of two simple disjoint graphs G1,G2 connected by two edges e1 and e2 which form a cycle C4 inside G. We give a method of computing the determinant det A(G) of the adjacency matrix of G by reducing the calculation of the determinant to certain subgraphs of G1 and G2. To show the scope and effectiveness of our method we give some examples
@article{bwmeta1.element.doi-10_7151_dmgt_1745, author = {Lidia Badura}, title = {Two Graphs with a Common Edge}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {497-507}, zbl = {1305.05125}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1745} }
Lidia Badura. Two Graphs with a Common Edge. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 497-507. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1745/
[1] A. Abdollahi, Determinants of adjacency matrices of graphs, Trans. Combin. 1(4) (2012) 9-16. | Zbl 1272.05107
[2] F. Harary, The Determinant of the adjacency matrix of a graph, SIAM Rev. 4 (1961) 202-210. doi:10.1137/1004057[Crossref] | Zbl 0113.17406
[3] L. Huang and W. Yan, On the determinant of the adjacency matrix of a type of plane bipartite graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 931-938. | Zbl 1289.05293
[4] H.M. Rara, Reduction procedures for calculating the determinant of the adjacency matrix of some graphs and the singularity of square planar grids, Discrete Math. 151 (1996) 213-219. doi:10.1016/0012-365X(94)00098-4[Crossref]
[5] P. Wojtylak and S. Arworn, Paths of cycles and cycles of cycles, (2010) preprint.