A decomposition of gallai multigraphs
Alexander Halperin ; Colton Magnant ; Kyle Pula
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 331-352 / Harvested from The Polish Digital Mathematics Library

An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267744
@article{bwmeta1.element.doi-10_7151_dmgt_1740,
     author = {Alexander Halperin and Colton Magnant and Kyle Pula},
     title = {A decomposition of gallai multigraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {331-352},
     zbl = {1290.05075},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1740}
}
Alexander Halperin; Colton Magnant; Kyle Pula. A decomposition of gallai multigraphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 331-352. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1740/

[1] B. Alexeev, On lengths of rainbow cycles, Electron. J. Combin. 13(1) (2006) #105

[2] R.N. Ball, A. Pultr and P. Vojtěchovský, Colored graphs without colorful cycles, Combinatorica 27 (2007) 407-427. doi:10.1007/s00493-007-2224-6[WoS][Crossref] | Zbl 1174.05041

[3] A. Diwan and D. Mubayi, Turán’s theorem with colors, preprint, 2007.

[4] R.J. Faudree, R. Gould, M. Jacobson and C. Magnant, Ramsey numbers in rainbow triangle free colorings, Australas. J. Combin. 46 (2010) 269-284. | Zbl 1196.05052

[5] A. Frieze and M. Krivelevich, On rainbow trees and cycles, Electron. J. Combin. 15 (2008) #59. | Zbl 1159.05019

[6] S. Fujita and C. Magnant, Extensions of Gallai-Ramsey results, J. Graph Theory 70 (2012) 404-426. doi:10.1002/jgt.20622[Crossref] | Zbl 1247.05149

[7] S. Fujita and C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247-1254. doi:10.1016/j.disc.2009.11.004[Crossref]

[8] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1-30. doi:10.1007/s00373-010-0891-3[Crossref][WoS] | Zbl 1231.05178

[9] S. Fujita, C. Magnant and K. Ozeki. Rainbow generalizations of Ramsey theory: a survey, (2011) updated. http://math.georgiasouthern.edu/∼cmagnant | Zbl 1231.05178

[10] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66. doi:10.1007/BF02020961[Crossref]

[11] A. Gyárfás, G. Sárközy, A. Sebö and S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233-243.[WoS] | Zbl 1209.05082

[12] A. Gyárfás and G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211-216. doi:10.1002/jgt.20001[Crossref] | Zbl 1041.05028

[13] P. Vojtěchovský, Periods in missing lengths of rainbow cycles, J. Graph Theory 61 (2009) 98-110. doi:10.1002/jgt.20371 [Crossref][WoS] | Zbl 1191.05047