Packing Trees Into n-Chromatic Graphs
András Gyárfás
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 199-201 / Harvested from The Polish Digital Mathematics Library

We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268205
@article{bwmeta1.element.doi-10_7151_dmgt_1735,
     author = {Andr\'as Gy\'arf\'as},
     title = {Packing Trees Into n-Chromatic Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {199-201},
     zbl = {1292.05213},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1735}
}
András Gyárfás. Packing Trees Into n-Chromatic Graphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 199-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1735/

[1] D. Gerbner, B. Keszegh and C. Palmer, Generalizations of the tree packing conjecture, Discuss. Math. Graph Theory 32 (2012) 569-582. doi:10.7151/dmgt.1628[Crossref] | Zbl 1257.05129

[2] D. Gerbner, B. Keszegh and C. Palmer, Red-blue alternating paths, Third Emléktábla Workshop, p.25. http://www.renyi.hu/emlektab/index/booklet.html

[3] A. Gyárfás and J. Lehel, Packing trees of different order into Kn, Combinatorics, Proc. Fifth Hungarian Coll. Keszthely, 1976, Vol II. North Holland. Colloq. Math. Soc. J. Bolyai 18 463-469. | Zbl 0389.05030

[4] A. Gyárfás, E. Szemerédi and Zs. Tuza, Induced subtrees in graphs of large chromatic number , Discrete Math. 30 (1980) 235-244. doi:10.1016/0012-365X(80)90230-7[Crossref] | Zbl 0475.05027

[5] S. Zaks and C.L. Liu, Decomposition of graphs into trees, Proceedings of 8-th South- eastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La. Util. Math., Congr. Numer. XIX (1977) 643-654.