We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.
@article{bwmeta1.element.doi-10_7151_dmgt_1735, author = {Andr\'as Gy\'arf\'as}, title = {Packing Trees Into n-Chromatic Graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {199-201}, zbl = {1292.05213}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1735} }
András Gyárfás. Packing Trees Into n-Chromatic Graphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 199-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1735/
[1] D. Gerbner, B. Keszegh and C. Palmer, Generalizations of the tree packing conjecture, Discuss. Math. Graph Theory 32 (2012) 569-582. doi:10.7151/dmgt.1628[Crossref] | Zbl 1257.05129
[2] D. Gerbner, B. Keszegh and C. Palmer, Red-blue alternating paths, Third Emléktábla Workshop, p.25. http://www.renyi.hu/emlektab/index/booklet.html
[3] A. Gyárfás and J. Lehel, Packing trees of different order into Kn, Combinatorics, Proc. Fifth Hungarian Coll. Keszthely, 1976, Vol II. North Holland. Colloq. Math. Soc. J. Bolyai 18 463-469. | Zbl 0389.05030
[4] A. Gyárfás, E. Szemerédi and Zs. Tuza, Induced subtrees in graphs of large chromatic number , Discrete Math. 30 (1980) 235-244. doi:10.1016/0012-365X(80)90230-7[Crossref] | Zbl 0475.05027
[5] S. Zaks and C.L. Liu, Decomposition of graphs into trees, Proceedings of 8-th South- eastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La. Util. Math., Congr. Numer. XIX (1977) 643-654.