The Domination Number of K 3 n
John Georges ; Jianwei Lin ; David Mauro
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 629-632 / Harvested from The Polish Digital Mathematics Library

Let K3n denote the Cartesian product Kn□Kn□Kn, where Kn is the complete graph on n vertices. We show that the domination number of K3n is [...]

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267624
@article{bwmeta1.element.doi-10_7151_dmgt_1731,
     author = {John Georges and Jianwei Lin and David Mauro},
     title = {
      The Domination Number of K
      3
      n
    },
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {629-632},
     zbl = {1305.05175},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1731}
}
John Georges; Jianwei Lin; David Mauro. 
      The Domination Number of K
      3
      n
    . Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 629-632. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1731/

[1] T.Y. Chang, Domination number of grid graphs, Ph.D. Thesis, (Department of Mathematics, University of South Florida, 1992).

[2] T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81-108. doi:10.1002/jgt.3190170110[Crossref] | Zbl 0780.05030

[3] M.H. El-Zahar and R.S. Shaheen, On the domination number of the product of two cycles, Ars Combin. 84 (2007) 51-64. | Zbl 1212.05192

[4] M.H. El-Zahar and R.S. Shaheen, The domination number of C8 □Cn and C9 □Cn, J. Egyptian Math. Soc. 7 (1999) 151-166. | Zbl 0935.05070

[5] D. Gon¸calves, A. Pinlou, M. Rao and S. Thomass´e, The domination number of grids, SIAM J. Discrete Math. 25 (2011) 1443-1453. doi:10.1137/11082574[Crossref][WoS]

[6] F. Harary and M. Livingston, Independent domination in hypercubes, Appl. Math. Lett. 6 (1993) 27-28. doi:10.1016/0893-9659(93)90027-K[Crossref] | Zbl 0780.05031

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998). | Zbl 0890.05002

[8] M.S. Jacobson and L.F. Kinch, On the domination number of the products of graphs I, Ars Combin. 18 (1983) 33-44. | Zbl 0566.05050

[9] S. Klavˇzar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136. doi:10.1016/0166-218X(93)E0167-W[Crossref] | Zbl 0824.05037

[10] K.-J. Pai and W.-J. Chiu, A note on ”On the power dominating set of hypercubes”, in: Proceedings of the 29th Workshop on Combinatorial Mathematics and Comput- ing Theory, National Taipei College of Business, Taipei, Taiwan April 27-28, (2012) 65-68.

[11] R.S. Shaheen, On the domination number of m × n toroidal grid graphs, Congr. Numer. 146 (2000) 187-200. | Zbl 0976.05045

[12] V.G Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk, 23 (6 (144)) (1968) 117-134. | Zbl 0177.52301

[13] V.G Vizing, The Cartesian product of graphs, Vy˘cisl. Sistemy 9 (1963) 30-43.

[14] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001)