The ramsey number for theta graph versus a clique of order three and four
M.S.A. Bataineh ; M.M.M. Jaradat ; M.S. Bateeha
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 223-232 / Harvested from The Polish Digital Mathematics Library

For any two graphs F1 and F2, the graph Ramsey number r(F1, F2) is the smallest positive integer N with the property that every graph on at least N vertices contains F1 or its complement contains F2 as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine r(θn,Km) for m = 2, 3, 4 and n > m. More specifically, we establish that r(θn,Km) = (n − 1)(m − 1) + 1 for m = 3, 4 and n > m

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267918
@article{bwmeta1.element.doi-10_7151_dmgt_1730,
     author = {M.S.A. Bataineh and M.M.M. Jaradat and M.S. Bateeha},
     title = {The ramsey number for theta graph versus a clique of order three and four},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {223-232},
     zbl = {1290.05109},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1730}
}
M.S.A. Bataineh; M.M.M. Jaradat; M.S. Bateeha. The ramsey number for theta graph versus a clique of order three and four. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 223-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1730/

[1] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off- diagonal numbers, Pacific J. Math. 41 (1972) 335-345. doi:10.2140/pjm.1972.41.335[Crossref] | Zbl 0227.05115

[2] R. Bolze and H. Harborth, The Ramsey number r(K4 − x,K5), The Theory and Applications of Graphs (Kalamazoo, MI, 1980) John Wiley & Sons, New York (1981) 109-116.

[3] L. Boza, Nuevas Cotas Superiores de Algunos Numeros de Ramsey del Tipo r(Km,Kn − e), in: Proceedings of the VII Jornada de Matematica Discreta y Algo- ritmica, JMDA 2010, Castro Urdiales, Spain July (2010).

[4] R.J. Faudree, C.C. Rousseau and R.H. Schelp, All triangle-graph Ramsey numbers for connected graphs of order six , J. Graph Theory 4 (1980) 293-300. doi:10.1002/jgt.3190040307[Crossref] | Zbl 0446.05035

[5] M.M.M. Jaradat, M.S. Bataineh and S. Radaideh, Ramsey numbers for theta graphs, Internat. J. Combin. 2011 (2011) Article ID 649687. doi:10.1155/2011/649687 | Zbl 1236.05130

[6] J. McNamara, Sunny Brockport, unpublished

[7] J. McNamara and S.P. Radziszowski, The Ramsey Numbers R(K4 − e,K6 − e) and R(K4 − e,K7 − e), Congr. Numer. 81 (1991) 89-96.

[8] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2011) DS1