A ramsey-type theorem for multiple disjoint copies of induced subgraphs
Tomoki Nakamigawa
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 249-261 / Harvested from The Polish Digital Mathematics Library

Let k and ℓ be positive integers with ℓ ≤ k − 2. It is proved that there exists a positive integer c depending on k and ℓ such that every graph of order (2k−1−ℓ/k)n+c contains n vertex disjoint induced subgraphs, where these subgraphs are isomorphic to each other and they are isomorphic to one of four graphs: (1) a clique of order k, (2) an independent set of order k, (3) the join of a clique of order ℓ and an independent set of order k − ℓ, or (4) the union of an independent set of order ℓ and a clique of order k − ℓ.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268005
@article{bwmeta1.element.doi-10_7151_dmgt_1729,
     author = {Tomoki Nakamigawa},
     title = {A ramsey-type theorem for multiple disjoint copies of induced subgraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {249-261},
     zbl = {1290.05110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1729}
}
Tomoki Nakamigawa. A ramsey-type theorem for multiple disjoint copies of induced subgraphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 249-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1729/

[1] S.A. Burr, On the Ramsey numbers r(G, nH) and r(nG, nH) when n is large, Dis- crete Math. 65 (1987) 215-229. doi:10.1016/0012-365X(87)90053-7[Crossref] | Zbl 0621.05024

[2] S.A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discrete Math. 70 (1988) 277-293. doi:10.1016/0012-365X(88)90004-0[Crossref][WoS] | Zbl 0647.05040

[3] S.A. Burr, P. Erd˝os and J.H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975) 87-99. doi:10.1090/S0002-9947-1975-0409255-0[Crossref] | Zbl 0273.05111

[4] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, 2nd Edition (Wi- ley, New York, 1990).

[5] T. Nakamigawa, Vertex disjoint equivalent subgraphs of order 3, J. Graph Theory 56 (2007) 159-166. doi:10.1002/jgt.20263[Crossref][WoS] | Zbl 1128.05028