Let G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For v ∈ V, let ND(v) = {u ∈ V : d(u, v) ∈ D}. The graph G is said to be D-vertex magic if there exists a bijection f : V (G) → {1, 2, . . . , n} such that for all v ∈ V, ∑uv∈ND(v) f(u) is a constant, called D-vertex magic constant. O’Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete r-partite graphs where r ≥ 4.
@article{bwmeta1.element.doi-10_7151_dmgt_1728, author = {S. Arumugam and N. Kamatchi and G.R. Vijayakumar}, title = {On the uniqueness of d-vertex magic constant}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {279-286}, zbl = {1290.05126}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1728} }
S. Arumugam; N. Kamatchi; G.R. Vijayakumar. On the uniqueness of d-vertex magic constant. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 279-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1728/
[1] S. Arumugam, D. Fronček and N. Kamatchi, Distance magic graphs-A survey, J. Indones. Math. Soc., Special Edition (2011) 11-26. | Zbl 1288.05216
[2] S. Beena, On ∑ and ∑′ labelled graphs, Discrete Math. 309 (2009) 1783-1787. doi:10.1016/j.disc.2008.02.038[Crossref]
[3] G. Chartrand and L. Lesniak, Graphs & Digraphs, 4th Edition (Chapman and Hall, CRC, 2005).
[4] D. Grinstead and P.J. Slater, Fractional domination and fractional packings in graphs, Congr. Numer. 71 (1990) 153-172. | Zbl 0691.05043
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcel Dekker, Inc., 1998). | Zbl 0883.00011
[6] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305-315. | Zbl 1031.05117
[7] A. O’Neal and P.J. Slater, An introduction to distance D magic graphs, J. Indones. Math. Soc., Special Edition (2011) 91-107. | Zbl 1288.05227
[8] A. O’Neal and P.J. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math. 27 (2013) 708-716. doi:10.1137/110834421[Crossref][WoS] | Zbl 1272.05174
[9] K.A. Sugeng, D. Fronček, M. Miller, J. Ryan and J. Walker, On distance magic labeling of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 39-48. | Zbl 1197.05133
[10] V. Vilfred, ∑-labelled graph and circulant graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.