We show that an n-vertex hypergraph with no r-regular subgraphs has at most 2n−1+r−2 edges. We conjecture that if n > r, then every n-vertex hypergraph with no r-regular subgraphs having the maximum number of edges contains a full star, that is, 2n−1 distinct edges containing a given vertex. We prove this conjecture for n ≥ 425. The condition that n > r cannot be weakened.
@article{bwmeta1.element.doi-10_7151_dmgt_1722, author = {Jaehoon Kim and Alexandr V. Kostochka}, title = {Maximum Hypergraphs without Regular Subgraphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {151-166}, zbl = {1292.05201}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1722} }
Jaehoon Kim; Alexandr V. Kostochka. Maximum Hypergraphs without Regular Subgraphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 151-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1722/
[1] N. Alon, S. Friedland, and G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory (B) 37 (1984) 79-91. doi:10.1016/0095-8956(84)90047-9[Crossref] | Zbl 0527.05059
[2] M. Kano, Regular subgraphs of a regular graph, Annals of the New York Academy of Sciences 576 (1989) 281-284. doi:10.1111/j.1749-6632.1989.tb16409.x[Crossref] | Zbl 0793.05127
[3] D. Mubayi and J. Verstraëte, Two-regular subgraphs of hypergraphs, J. Combin. Theory (B) 99 (2009) 643-655. doi:10.1016/j.jctb.2008.10.005[Crossref] | Zbl 1223.05202
[4] L. Pyber, Regular subgraphs of dense graphs, Combinatorica 5 (1985) 347-349. doi:10.1007/BF02579250[Crossref] | Zbl 0596.05035
[5] L. Pyber, V. Rödl, and E. Szemerédi, Dense graphs without 3-regular subgraphs, J. Combin. Theory (B) 63 (1995) 41-54. doi:10.1006/jctb.1995.1004[Crossref] | Zbl 0822.05037
[6] V. Rödl and B. Wysocka, Note on regular subgraphs, J. Graph Theory 24 (1997) 139-154. doi:10.1002/(SICI)1097-0118(199702)24:2h139::AID-JGT2i3.0.CO;2-R[Crossref]
[7] V.A. Tashkinov, 3-regular subgraphs of 4-regular graphs, Mat. Zametki 36 (1984) 239-259..
[8] V.A. Tashkinov, Regular parts of regular pseudographs, Mat. Zametki 43 (1988)) 263-275. | Zbl 0744.05069