The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number
Li Su ; Hong-Hai Li ; Jing Zhang
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 95-102 / Harvested from The Polish Digital Mathematics Library

In this paper we observe that the minimal signless Laplacian spectral radius is obtained uniquely at the kite graph PKn−ω,ω among all connected graphs with n vertices and clique number ω. In addition, we show that the spectral radius μ of PKm,ω (m ≥ 1) satisfies [...] More precisely, for m > 1, μ satisfies the equation [...] where [...] and [...] . At last the spectral radius μ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268308
@article{bwmeta1.element.doi-10_7151_dmgt_1718,
     author = {Li Su and Hong-Hai Li and Jing Zhang},
     title = {The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {95-102},
     zbl = {1292.05180},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1718}
}
Li Su; Hong-Hai Li; Jing Zhang. The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 95-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1718/

[1] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Chinese Univ. (B) 17 (2002) 371-376. doi:10.1007/s11766-002-0017-7[Crossref] | Zbl 1022.05046

[2] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171. doi:10.1016/j.laa.2007.01.009[WoS][Crossref] | Zbl 1113.05061

[3] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian I, Publ. Inst. Math. (Beograd) 99 (2009) 19-33. | Zbl 1224.05293

[4] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian II, Linear Algebra Appl. 432 (2010) 2257-2272. doi:10.1016/j.laa.2009.05.020[Crossref] | Zbl 1218.05089

[5] E.R. van Dam and W. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272. doi:10.1016/S0024-3795(03)00483-X[Crossref] | Zbl 1026.05079

[6] W. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004) 199-211. doi:10.1016/S0195-6698(03)00100-8[Crossref] | Zbl 1033.05070

[7] B. Mohar and W. Woess, A survey on spectra of infnite graphs, Bull. London Math. Soc. 21 (1989) 209-234. doi:10.1112/blms/21.3.209[Crossref] | Zbl 0645.05048

[8] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722 (2007) 736-741. doi:10.1016/j.laa.2006.12.005[Crossref][WoS]

[9] D. Stevanović and P. Hansen, The minimum spectral radius of graphs with a given clique number , Electron. J. Linear Algebra 17 (2008) 110-117. | Zbl 1148.05306