A buttoning of a tree that has vertices v1, v2, . . . , vn is a closed walk that starts at v1 and travels along the shortest path in the tree to v2, and then along the shortest path to v3, and so forth, finishing with the shortest path from vn to v1. Inspired by a problem about buttoning a shirt inefficiently, we determine the maximum length of buttonings of trees
@article{bwmeta1.element.doi-10_7151_dmgt_1716, author = {Ian Short}, title = {Maximal buttonings of trees}, journal = {Discussiones Mathematicae Graph Theory}, volume = {34}, year = {2014}, pages = {415-420}, zbl = {1290.05061}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1716} }
Ian Short. Maximal buttonings of trees. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 415-420. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1716/
[1] C.A. Barefoot, R.C. Entringer and L.A. Sz´ekely, Extremal values for ratios of dis- tances in trees, Discrete Appl. Math. 80 (1997) 37-56. doi:10.1016/S0166-218X(97)00068-1[Crossref]
[2] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math 66 (2001) 211-249. doi:10.1023/A:1010767517079[Crossref] | Zbl 0982.05044
[3] L. Johns and T.C. Lee, S-distance in trees, in: Computing in the 90’s (Kalamazoo, MI, 1989), Lecture Notes in Comput. Sci., 507, N.A. Sherwani, E. de Doncker and J.A. Kapenga (Ed(s)), (Springer, Berlin, 1991) 29-33. doi:10.1007/BFb0038469[Crossref]
[4] T. Lengyel, Some graph problems and the realizability of metrics by graphs, Congr. Numer. 78 (1990) 245-254. | Zbl 0862.05038