Almost-Rainbow Edge-Colorings of Some Small Subgraphs
Elliot Krop ; Irina Krop
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 771-784 / Harvested from The Polish Digital Mathematics Library

Let f(n, p, q) be the minimum number of colors necessary to color the edges of Kn so that every Kp is at least q-colored. We improve current bounds on these nearly “anti-Ramsey” numbers, first studied by Erdös and Gyárfás. We show that [...] , slightly improving the bound of Axenovich. We make small improvements on bounds of Erdös and Gyárfás by showing [...] and for all even n ≢ 1(mod 3), f(n, 4, 5) ≤ n− 1. For a complete bipartite graph G= Kn,n, we show an n-color construction to color the edges of G so that every C4 ⊆ G is colored by at least three colors. This improves the best known upper bound of Axenovich, Füredi, and Mubayi.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268325
@article{bwmeta1.element.doi-10_7151_dmgt_1710,
     author = {Elliot Krop and Irina Krop},
     title = {Almost-Rainbow Edge-Colorings of Some Small Subgraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {771-784},
     zbl = {1295.05151},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1710}
}
Elliot Krop; Irina Krop. Almost-Rainbow Edge-Colorings of Some Small Subgraphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 771-784. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1710/

[1] M. Axenovich, A generalized Ramsey problem, Discrete Math. 222 (2000) 247-249. doi:10.1016/S0012-365X(00)00052-2[Crossref]

[2] M. Axenovich, Z. Füredi and D. Mubayi, On generalized Ramsey theory: the bipartite case, J. Combin. Theory (B) 79 (2000) 66-86. doi:10.1006/jctb.1999.1948[Crossref] | Zbl 1023.05101

[3] R. Diestel, Graph Theory, Third Edition (Springer-Verlag, Heidelberg, Graduate Texts in Mathematics, Volume 173, 2005).

[4] P. Erdös, Solved and unsolved problems in combinatorics and combinatorial number theory, Congr. Numer. 32 (1981) 49-62.

[5] P. Erdös and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997) 459-467. doi:10.1007/BF01195000[Crossref] | Zbl 0910.05034

[6] J. Fox and B. Sudakov, Ramsey-type problem for an almost monochromatic K4, SIAM J. Discrete Math. 23 (2008) 155-162. doi:10.1137/070706628[Crossref][WoS] | Zbl 1190.05085

[7] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: A survey, Graphs Combin. 26 (2010) 1-30. doi:10.1007/s00373-010-0891-3[Crossref] | Zbl 1231.05178

[8] A. Kostochka and D. Mubayi, When is an almost monochromatic K4 guaranteed?, Combin. Probab. Comput. 17 (2008) 823-830. doi:10.1017/S0963548308009413[WoS][Crossref] | Zbl 1180.05071

[9] D. Mubayi, Edge-coloring cliques with three colors on all four cliques, Combinatorica 18 (1998) 293-296. doi:10.1007/PL00009822[Crossref] | Zbl 0910.05035

[10] R. Wilson, Graph Theory, Fourth Edition (Prentice Hall, Pearson Education Limited, 1996).