Besides the classical chromatic and achromatic numbers of a graph related to minimum or minimal vertex partitions into independent sets, the b-chromatic number was introduced in 1998 thanks to an alternative definition of the minimality of such partitions. When independent sets are replaced by dominating sets, the parameters corresponding to the chromatic and achromatic numbers are the domatic and adomatic numbers d(G) and ad(G). We introduce the b-domatic number bd(G) as the counterpart of the b-chromatic number by giving an alternative definition of the maximality of a partition into dominating sets. We initiate the study of bd(G) by giving some properties and examples.
@article{bwmeta1.element.doi-10_7151_dmgt_1709, author = {Odile Favaron}, title = {The B-Domatic Number of a Graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {33}, year = {2013}, pages = {747-757}, zbl = {1295.05175}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1709} }
Odile Favaron. The B-Domatic Number of a Graph. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 747-757. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1709/
[1] M. Alkhateeb and A. Kohl, Upper bounds on the b-chromatic number and results for restricted graph classes, Discuss. Math. Graph Theory 31 (2011) 709-735. doi:10.7151/dmgt.1575[Crossref] | Zbl 1255.05072
[2] D. Barth, J. Cohen and T. Faik, Non approximality and non-continuity of the fall coloring problem, LRI Research report, Paris-Sud University 1402 (2005).
[3] S. Cabello and M. Jakovac, On the b-chromatic number of regular graphs, Discrete Appl. Math. 159 (2011) 1303-1310. doi:10.1016/j.dam.2011.04.028[Crossref][WoS] | Zbl 1223.05063
[4] E.J. Cockayne, Domination in undirected graphs-a survey, in: Theory and Applications of Graphs, Lectures Notes in Math. 642, (Springer, Berlin, 1978) 141-147. doi:10.1007/BFb0070371[Crossref]
[5] E.J. Cockayne, and S.T. Hedetniemi, Disjoint independent dominating sets in graphs, Discrete Math. 15 (1976) 213-222. doi:10.1016/0012-365X(76)90026-1[WoS][Crossref] | Zbl 0364.05035
[6] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261. doi:10.1002/net.3230070305[Crossref] | Zbl 0384.05051
[7] G.J. Chang, The domatic number problem, Discrete Math. 125 (1994) 115-122. doi:10.1016/0012-365X(94)90151-1[Crossref]
[8] S. Corteel, M. Valencia-Pabon and J.-C. Vera, On approximating the b-chromatic number , Discrete Appl. Math. 146 (2005) 106-110. doi:10.1016/j.dam.2004.09.006[Crossref] | Zbl 1057.05032
[9] J.E. Dunbar, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisley, R.C. Laskar and D.F. Rall, Fall colorings in graphs, J. Combin. Math. Combin. Comput. 33 (2000) 257-273. | Zbl 0962.05020
[10] F. Harary, S.T. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math. 26 (1967) 453-462. | Zbl 0187.20903
[11] F. Harary and S.T. Hedetniemi, The achromatic number of a graph, J. Combin. Theory 8 (1970) 154-161. doi:10.1016/S0021-9800(70)80072-2[Crossref] | Zbl 0195.25702
[12] C.T. Hoang, F. Maffray and M. Mechebbek, A characterization of b-perfect graphs, J. Graph Theory 71 (2012) 95-122. doi:10.1002/jgt.20635[Crossref] | Zbl 1248.05073
[13] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141. doi:10.1016/S0166-218X(98)00146-2[WoS][Crossref]
[14] J. Ivančo, An interpolation theorem for partitions which are indivisible with respect to cohereditary properties, J. Combin. Theory (B) 52 (1991) 97-101. doi:10.1016/0095-8956(91)90095-2[Crossref] | Zbl 0741.05003
[15] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277. doi:10.1016/S0012-365X(01)00469-1[Crossref]
[16] J. Kratochvíl, Zs. Tuza and M. Voigt, On the b-chromatic number of graphs, Lect. Notes Comput. Sci. 2573 (2002) 310-320. doi:10.1007/3-540-36379-3 27[Crossref] | Zbl 1024.05026
[17] J. Lyle, N. Drake and R. Laskar, Independent domatic partitioning or fall coloring of strongly chordal graphs, Congr. Numer. 172 (2005) 149-159. | Zbl 1088.05033
[18] D.F. Manlove, Minimaximal and maximinimal optimisation problems: a partial order approach (PhD Thesis, Glasgow, 1998).
[19] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962).
[20] M. Valencia-Pabon, Idomatic partitions of direct products of complete graphs, Discrete Math. 310 (2010) 1118-1122. doi:10.1016/j.disc.2009.10.012[WoS][Crossref] | Zbl 1215.05136
[21] B. Zelinka, Adomatic and idomatic numbers of graphs, Math. Slovaca 33 (1983) 99-103. | Zbl 0507.05059
[22] B. Zelinka, Domatically critical graphs, Czechoslovak Math. J. 30 (1980) 486-489.