A note on pm-compact bipartite graphs
Jinfeng Liu ; Xiumei Wang
Discussiones Mathematicae Graph Theory, Tome 34 (2014), p. 409-413 / Harvested from The Polish Digital Mathematics Library

A graph is called perfect matching compact (briefly, PM-compact), if its perfect matching graph is complete. Matching-covered PM-compact bipartite graphs have been characterized. In this paper, we show that any PM-compact bipartite graph G with δ (G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM-compact, which implies that G is matching-covered

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267552
@article{bwmeta1.element.doi-10_7151_dmgt_1706,
     author = {Jinfeng Liu and Xiumei Wang},
     title = {A note on pm-compact bipartite graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {34},
     year = {2014},
     pages = {409-413},
     zbl = {1290.05121},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1706}
}
Jinfeng Liu; Xiumei Wang. A note on pm-compact bipartite graphs. Discussiones Mathematicae Graph Theory, Tome 34 (2014) pp. 409-413. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1706/

[1] C.A. Barefoot, R.C. Entringer and L.A. Sz´ekely, Extremal values for ratios of dis- tances in trees, Discrete Appl. Math. 80 (1997) 37-56. doi:10.1016/S0166-218X(97)00068-1[Crossref]

[2] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math 66 (2001) 211-249. doi:10.1023/A:1010767517079[Crossref] | Zbl 0982.05044

[3] L. Johns and T.C. Lee, S-distance in trees, in: Computing in the 90’s (Kalamazoo, MI, 1989), Lecture Notes in Comput. Sci., 507, N.A. Sherwani, E. de Doncker and J.A. Kapenga (Ed(s)), (Springer, Berlin, 1991) 29-33. doi:10.1007/BFb0038469[Crossref]

[4] T. Lengyel, Some graph problems and the realizability of metrics by graphs, Congr. Numer. 78 (1990) 245-254 | Zbl 0862.05038