The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. According to their special structure, the class of Cartesian products of two graphs is one of few graph classes for which some exact values of crossing numbers were obtained. The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. Moreover, except of six graphs, the crossing numbers of Cartesian products G⃞K1,n for all other connected graphs G on five vertices are known. In this paper we are dealing with the Cartesian products of stars with graphs on six vertices. We give the exact values of crossing numbers for some of these graphs and we summarise all known results concerning crossing numbers of these graphs. Moreover, we give the crossing number of G1⃞T for the special graph G1 on six vertices and for any tree T with no vertex of degree two as well as the crossing number of K1,n⃞T for any tree T with maximum degree five.
@article{bwmeta1.element.doi-10_7151_dmgt_1705, author = {Mari\'an Kle\v s\v c and \v Stefan Schr\"otter}, title = {On the Crossing Numbers of Cartesian Products of Stars and Graphs of Order Six}, journal = {Discussiones Mathematicae Graph Theory}, volume = {33}, year = {2013}, pages = {583-597}, zbl = {1274.05098}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1705} }
Marián Klešč; Štefan Schrötter. On the Crossing Numbers of Cartesian Products of Stars and Graphs of Order Six. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 583-597. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1705/
1] K. Asano, The crossing number of K1,3,n and K2,3,n, J. Graph Theory 10 (1986) 1-8. doi:10.1002/jgt.3190100102[Crossref]
[2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four , J. Graph Theory 4 (1980) 145-155. doi:10.1002/jgt.3190040203[Crossref] | Zbl 0403.05037
[3] D. Bokal, On the crossing number of Cartesian products with paths, J. Combin. Theory (B) 97 (2007) 381-384. doi:10.1016/j.jctb.2006.06.003[Crossref] | Zbl 1113.05027
[4] D. Bokal, On the crossing numbers of Cartesian products with trees, J. Graph Theory 56 (2007) 287-300. doi:10.1002/jgt.20258[Crossref] | Zbl 1128.05017
[5] M. Draženská and M. Klešč, The crossing numbers of products of the graph K2,2,2 with stars, Carpathian J. Math. 24 (2008) 327-331. | Zbl 1249.05331
[6] L.Y. Glebsky and G. Salazar, The crossing number of Cm ×Cn is as conjectured for n ≥ m(m + 1), J. Graph Theory 47 (2004) 53-72. doi:10.1002/jgt.20016[Crossref] | Zbl 1053.05032
[7] F. Harary, P.C. Kainen and A.J. Schwenk, Toroidal graphs with arbitrarily high crossing numbers, Nanta Math 6 (1973) 58-67. | Zbl 0285.05104
[8] X. He, The crossing number of Cartesian products of stars with 5-vertex graphs, in: 2010 International Conference on Computational Intelligence and Software Engineering, CiSE 2010, Wuhan, December 2010.
[9] P.T. Ho, The crossing number of K2,2,2,n, Far East J. Appl. Math. 30 (2008) 43-69. | Zbl 1148.05028
[10] Y. Huang and T. Zhao, The crossing number of K1,4,n, Discrete Math. 308 (2008) 1634-1638. doi:10.1016/j.disc.2006.12.002[Crossref]
[11] S. Jendrol’ and M. Ščerbová, On the crossing numbers of Sm × Pn and Sm × Cn, ˇ Casopis pro P ˇ estov´ an´ı Matematiky 107 ( 1982) 225-230.
[12] D.J. Kleitman, The crossing number of K5,n, J. Combin. Theory (B) 9 (1971) 315-323. | Zbl 0205.54401
[13] M. Klešč, The crossing numbers of Cartesian products of stars and paths or cycles, Math. Slovaca 41 (1991) 113-120. | Zbl 0755.05067
[14] M. Klešč, The crossing numbers of products of paths and stars with 4-vertex graphs, J. Graph Theory 18 (1994) 605-614. | Zbl 0808.05038
[15] M. Klešč, The crossing number of K2,3 ×Pn and K2,3 ×Sn, Tatra Mt. Math. Publ. 9 (1996) 51-56.
[16] M. Klešč, On the crossing numbers of products of stars and graphs of order five, Graphs Combin. 17 (2001) 289-294. doi:10.1007/s003730170042[Crossref] | Zbl 0977.05038
[17] M. Klešč, The join of graphs and crossing numbers, Electron. Notes Discrete Math. 28 (2007) 349-355. doi:10.1016/j.endm.2007.01.049[Crossref] | Zbl 1291.05108
[18] M. Klešč, On the crossing numbers of Cartesian products of stars and graphs on five vertices, Combinatorial Algorithms, Springer, LNCS 5874 (2009) 324-333. doi:10.1007/978-3-642-10217-2 32[Crossref] | Zbl 1267.05225
[19] V.R. Kulli and M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97. | Zbl 0982.05084
[20] S. Lü and Y. Huang, On the crossing numner of K5 × Sn, J. Math. Res. Expo. 28 (2008) 445-459.
[21] H. Mei and Y. Huang, The crossing number of K1,5,n, Internat. J. Math. Combin. 1 (2007) 33-44. | Zbl 1140.05023
[22] K. Zarankiewicz, On a problem of P. Turán concerning graphs, Fund. Math 41 (1954) 137-145 | Zbl 0055.41605